341
Views
0
CrossRef citations to date
0
Altmetric
Technology Report

Future of Liquid Chromatography–Mass Spectrometry in Metabolic Profiling and Metabolomic Studies for Biomarker Discovery

, , , , , & show all
Pages 159-185 | Published online: 24 May 2007

Bibliography

  • Nicholson JK , LindonJC, HolmesE: ‘Metabonomics‘: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data.Xenobiotica29 , 1181–1189 (1999).
  • Nicholson JK , ConnellyJ, LindonJC, HolmesE: Metabonomics: a platform for studying drug toxicity and gene function.Nat. Rev. Drug Discov.1 , 153–161 (2002).
  • Nicholson JK , WilsonID: Understanding ‘global’ systems biology: metabonomics and the continuum of metabolism.Nat. Rev. Drug Discov.2 , 668–676 (2003).
  • Lindon JC , HolmesE, NicholsonJK: So what’s the deal with metabonomics?Anal. Biochem.75 , 384A–391A (2003).
  • Pauling L : Orthomolecular psychiatry: varying the concentrations of substances normally present in the human body may control mental disease.Science160 , 265–271 (1968).
  • Robinson AB , WestallFC, EllisonGW: Multiple sclerosis: urinary amine measurment for orthomolecular diagnosis.Life Sci.14 , 1747–1753 (1974).
  • Rosenberg RN , RobinsonAB, PartridgeD: Urine vapor pattern for olivopontocerebellar degeneration.Clin. Biochem.8 , 365–368 (1975).
  • Dirren H , RobinsonAB, PaulingL: Sex-related patterns in the profiles of human urinary amino acids.Clin. Chem.21 , 1970–1975 (1975).
  • Robinson AB , DirrenH, SheetsA: Quantitative aging pattern in mouse urine vapor as measured by gas-liquid chromatography.Exp. Gerontol.11 , 11–16 (1976).
  • Robinson AB , WilloughbyR, RobinsonLR: Age dependent amines, amides, and amino acid residues in Drosophila melanogaster.Exp. Gerontol.11 , 113–120 (1976).
  • Kacser H , BurnsJA: The control of flux.Symp. Soc. Exp. Biol.27 , 65–104 (1973).
  • Barthelmess IB , CurtisCF, KacserH: Control of the flux to arginine in Neurospora crassa: de-repression of the last three enzymes of the arginine pathway.J. Mol. Biol.87 , 303–316 (1974).
  • Kacser H : The control of enzyme systems in vivo: elasticity analysis of the steady state.Biochem. Soc. Trans.11 , 35–40 (1983).
  • Middleton RJ , KacserH: Enzyme variation, metabolic flux and fitness: alcohol dehydrogenase in Drosophila melanogaster.Genetics105 , 633–650 (1983).
  • Hofmeyr JH , KacserH, vander Merwe KJ: Metabolic control analysis of moiety-conserved cycles.Eur. J. Biochem.155 , 631–641 (1986).
  • Kacser H : Recent developments beyond metabolic control analysis.Biochem. Soc. Trans.23 , 387–391 (1995).
  • Rashed MS : Clinical applications of tandem mass spectrometry: ten years of diagnosis and screening for inherited metabolic diseases.J. Chromatogr. B Biomed. Sci. Appl.758 , 27–48 (2001).
  • Clayton PT : Applications of mass spectrometry in the study of inborn errors of metabolism.J. Inherit. Metab. Dis.24 , 139–150 (2001).
  • Kuhara T : Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism.Mass Spectrom. Rev.24 , 814–827 (2005).
  • Pauling L , RobinsonAB, TeranishiR, CaryP: Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography.Proc. Natl Acad. Sci. USA68 , 2374–2376 (1971).
  • Robinson AB , PartridgeD, TurnerM, TeranishiR, PaulingL: An apparatus for the quantitative analysis of volatile compounds in urine.J. Chromatogr.85 , 19–29 (1973).
  • Matsumoto KE , PartridgeDH, RobinsonAB, PaulingL: The identification of volatile compounds in human urine.J. Chromatogr.85 , 31–34 (1973).
  • Robinson AB , RobinsonLR: Quantitative measurement of human physiological age by profiling of body fluids and pattern recognition.Mech. Ageing Dev.59 , 47–67 (1991).
  • Nicholson JK , HolmesE, LindonJC, WilsonID: The challenges of modeling mammalian biocomplexity.Nat. Biotechnol.22 , 1268–1274 (2004).
  • Nicholson JK , HolmesE, WilsonID: Gut microorganisms, mammalian metabolism and personalized health care.Nat. Rev. Microbiol.3 , 431–438 (2005).
  • Politzer IR , GithensS, DowtyBJ, LaseterJL: Gas chromatographic evaluation of the volatile constituents of lung, brain, and liver tissues.J. Chromatogr. Sci.13 , 378–379 (1975).
  • Knights BA , LegendreM, LaseterJL, StorerJS: Use of high-resolution open tubular glass capillary columns to separate acidic metabolites in urine.Clin. Chem.21 , 888–891 (1975).
  • Dowty BJ , GreenLE, LaseterJL: Automated gas chromatographic procedure to analyze volatile organics in water and biological fluids.Anal. Chem.48 , 946–949 (1976).
  • McConnell ML , NovotnyM: Automated high-resolution gas chromatographic system for recording and evaluation of metabolic profiles.J. Chromatogr.112 , 559–571 (1975).
  • McConnell ML , RhodesG, WatsonU, NovotnyM: Application of pattern recognition and feature extraction techniques to volatile constituent metabolic profiles obtained by capillary gas chromatography.J. Chromatogr.162 , 495–506 (1979).
  • Gates SC , SweeleyCC, KrivitW, DeWittD, BlaisdellBE: Automated metabolic profiling of organic acids in human urine. II. Analysis of urine samples from ‘healthy’ adults, sick children, and children with neuroblastoma.Clin. Chem.24 , 1680–1689 (1978).
  • van der Greef J , TasAC, BouwmanJ, TenNoever de Brauw MC, SchreursWHP: Evaluation of field-desorption and fast atom-bombardment mass spectrometric profiles by pattern recognition techniques.Anal. Chim. Acta150 , 45–52 (1983).
  • van der Greef J , TasAC, TenNoever de Brauw MC: Direct chemical ionization-pattern recognition: characterization of bacteria and body fluid profiling.Biomed. Environ. Mass Spectrom.16 , 45–50 (1988).
  • Tas AC , vanden Berg H, OdinkJ, KorthalsH, ThissenJTNM, vander Greef J: Direct chemical ionization-mass spectrometric profiling of urine in premenstrual syndrome.J. Pharm. Biomed. Anal.7 , 1239–1247 (1989).
  • Rhodes G , MillerM, McConnellML, NovotnyM: Metabolic abnormalities associated with diabetes mellitus, as investigated by gas chromatography and pattern-recognition analysis of profiles of volatile metabolites.Clin. Chem.27 , 580–585 (1981).
  • Oliver SG , WinsonMK, KellDB, BaganzF: Systematic functional analysis of the yeast genome.Trends Biotechnol.16 , 373–378 (1998).
  • Tweeddale H , Notley-McRobbL, FerenciT: Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (‘metabolome‘) analysis.J. Bacteriol.180 , 5109–5116 (1998).
  • Fiehn O : Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks.Comp. Funct. Genomics2 , 155–168 (2001).
  • Fiehn O : Metabolomics – the link between genotypes and phenotypes.Plant Mol. Biol.48 , 155–171 (2002).
  • Fiehn O , KristalB, vanOmmen Bet al.: Establishing reporting standards for metabolomic and metabonomic studies: a call for participation.OMICS10 , 158–163 (2006).
  • Castle AL , FiehnO, Kaddurah-DaoukR, LindonJC: Metabolomics Standards Workshop and the development of international standards for reporting metabolomics experimental results.Brief. Bioinformatics7 , 159–165 (2006).
  • Nicholson JK , BuckinghamMJ, SadlerPJ: High resolution 1H n.m.r. studies of vertebrate blood and plasma.Biochem. J.211 , 605–615 (1983).
  • Bales JR , HighamDP, HoweI, NicholsonJK, SadlerPJ: Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multicomponent analysis of urine.Clin. Chem.30 , 426–432 (1984).
  • Nicholson JK , TimbrellJA, SadlerPJ: Proton NMR spectra of urine as indicators of renal damage. Mercury-induced nephrotoxicity in rats.Mol. Pharmacol.27 , 644–651 (1985).
  • Gartland KP , BonnerFW, NicholsonJK: Investigations into the biochemical effects of region-specific nephrotoxins.Mol. Pharmacol.35 , 242–250 (1989).
  • Holmes E , NichollsAW, LindonJCet al.: Chemometric models for toxicity classification based on NMR spectra of biofluids.Chem. Res. Toxicol.13 , 471–478 (2000).
  • Robertson DG , ReilyMD, SiglerRE, WellsDF, PatersonDA, BradenTK: Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants.Toxicol Sci.57 , 326–337 (2000).
  • Reo NV : NMR-based metabolomics.Drug Chem. Toxicol.25 , 375–382 (2002).
  • Ramos LS : Characterization of mycobacteria species by HPLC and pattern recognition.J. Chromatogr. Sci.32 , 219–227 (1994).
  • Freeman R , GoodacreR, SissonPR, MageeJG, WardAC, LightfootNF: Rapid identification of species within the Mycobacterium tuberculosis complex by artificial neural network analysis of pyrolysis mass spectra.J. Med. Microbiol.40 , 170–173 (1994).
  • Goodacre R , RooneyPJ, KellDB: Discrimination between methicillin-resistant and methicillin-susceptible Staphylococcus aureus using pyrolysis mass spectrometry and artificial neural networks.J. Antimicrob. Chemother.41 , 27–34 (1998).
  • Moreda-Pineiro A , MarcosA, FisherA, HillSJ: Evaluation of the effect of data pretreatment procedures on classical pattern recognition and principle components analysis: a case study for the geographical classification of tea.J. Environ. Monit.3 , 352–360 (2001).
  • Spraul M , FreundAS, NastRE, WithersRS, MaasWE, CorcoranO: Advancing NMR sensitivity for LC–NMR–MS using a cryoflow probe: application. to the analysis of acetaminophen metabolites in urine.Anal. Chem.75 , 1546–1551 (2003).
  • Russell DJ , HaddenCE, MartinGE, GibsonAA, ZensAP, CarolanJL: A comparison of inverse-detected heteronuclear NMR performance: conventional vs cryogenic microprobe performance.J. Nat. Prod.63 , 1047–1049 (2000).
  • Keun HC , BeckonertO, GriffinJLet al.: Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies.Anal. Chem.74 , 4588–4593 (2002).
  • Wang Y , BollardME, KeunHet al.: Spectral editing and pattern recognition methods applied to high-resolution magic-angle spinning 1H nuclear magnetic resonance spectroscopy of liver tissues.Anal. Biochem.323 , 26–32 (2003).
  • Plumb RS , Castro-PerezJ, GrangerJ, BeattieI, JoncourK, WrightA: Ultraperformance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry.Rapid Commun. Mass Spectrom.18 , 2331–2337 (2004).
  • Wilson ID , NicholsonJK, Castro-PerezJet al.: High resolution ‘ultra performance’ liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies.J. Proteome Res.4 , 591–598 (2004).
  • Castro-Perez J , PlumbRS, GrangerJH, BeattieI, JoncourK, WrightA: Increasing throughput and information content for in vitro drug metabolism experiments using ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer.Rapid Commun. Mass Spectrom.19 , 843–848 (2005).
  • de Villiers A , LestremauF, SzucsR, GelebartS, DavidF, SandraP: Evaluation of ultra performance liquid chromatography Part I. Possibilities and limitations.J. Chromatogr. A1127 , 60–69 (2006).
  • Plumb RS , RainvilleP, SmithBWet al.: Generation of ultrahigh peak capacity LC separations via elevated temperatures and high linear mobile-phase velocities.Anal. Chem.78 , 7278–7283 (2006).
  • Robinson AB , PaulingL: Techniques of orthomolecular diagnosis.Clin. Chem.20 , 961–965 (1974).
  • Stein SE , AusloosP, LiasSG: Comparative evaluations of mass spectral databases.J. Am. Soc. Mass Spectrom.2 , 441–443 (1991).
  • Ausloos P , CliftonCL, LiasSGet al.: The critical evaluation of a comprehensive mass spectral library.J. Am. Soc. Mass Spectrom.10 , 287–299 (1999).
  • Schauer N , SteinhauserD, StrelkovSet al.: GC–MS libraries for the rapid identification of metabolites in complex biological samples.FEBS Lett.579 , 1332–1337 (2005).
  • Kopka J , SchauerN, KruegerSet al.: [email protected]: the golm metabolome Database.Bioinformatics21 , 1635–1638 (2005).
  • Halket JM , WatermanD, PrzyborowskaAM, PatelRKP, FraserPD, BramleyPM: Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS–MS.J. Exp. Bot.56 , 219–243 (2005).
  • Fiehn O , KopkaJ, TretheweyRN, WillmitzerL: Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry.Anal. Chem.72 , 3573–3580 (2000).
  • Fiehn O : Metabolic networks of Cucurbita maxima phloem.Phytochemistry62 , 875–886 (2003).
  • Trethewey RN : Metabolite profiling as an aid to metabolic engineering in plants.Curr. Opin. Plant Biol.7 , 196–201 (2004).
  • Little JL : Artifacts in trimethylsilyl derivatization reactions and ways to avoid them.J. Chromatogr. A844 , 1–22 (1999).
  • Jonsson P , GullbergJ, NordstromAet al.: A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS.Anal. Chem.76 , 1738–1745 (2004).
  • Broeckling CD , HuhmanDV, FaragMAet al.: Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism.J. Exp. Bot.56 , 323–336 (2005).
  • Schad M , MungurRajsree, FiehnO, KehrJ: Metabolic profiling of laser microdissected vascular bundles ofArabidopsis thaliana. Plant Methods1 , 2 (2005).
  • Bolling C , FiehnO: Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation.Plant Physiol.139 , 1995–2005 (2005).
  • Farag MA , RyuCM, SumnerLW, ParePW: GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants.Phytochemistry67 , 2262–2268 (2006).
  • Koek MM , MuilwijkB, vander Werf MJ, HankemeierT: Microbial metabolomics with gas chromatography/mass spectrometry.Anal. Chem.78 , 1272–1281 (2006).
  • Tarpley L , DuranAL, KebromTH, SumnerLW: Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period.BMC Plant Biol.5 , 8 (2005).
  • Denkert C , BudcziesJ, KindTet al.: Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors.Cancer Res.66 , 10795–10804 (2006).
  • Mastovska K , LehotaySJ: Practical approaches to fast gas chromatography-mass spectrometry.J. Chromatogr. A1000 , 153–180 (2003).
  • Dalluge J , BeensJ, BrinkmanUAT: Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool.J. Chromatogr. A1000 , 69–108 (2003).
  • Kueh AJ , MarriottPJ, WynnePM, VineJH: Application of comprehensive two-dimensional gas chromatography to drugs analysis in doping control.J. Chromatogr. A1000 , 109–124 (2003).
  • Santos FJ , GalceranMT: Modern developments in gas chromatography–mass spectrometry-based environmental analysis.J. Chromatogr. A1000 , 125–151 (2003).
  • Mondello L , CasilliA, TranchidaPQet al.: Evaluation of fast gas chromatography and gas chromatography-mass spectrometry in the analysis of lipids.J. Chromatogr. A1035 , 237–247 (2004).
  • Welthagen W , ShellieRA, SprangerJ, RistowM, ZimmermannR, FiehnO: Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC–TOF) for high resolution metabolomics: biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice.Metabolomics1 , 65–73 (2005).
  • Williams MC , HeltonED, GoldzieherJW: The urinary metabolites of 17α-ethynylestradiol-9α,11xi-3H in women. Chromatographic profiling and identification of ethynyl and non-ethynyl compounds.Steroids25 , 229–246 (1975).
  • Thompson JA , MarkeySP: Quantitative metabolic profiling of urinary organic acids by gas chromatography-mass spectrometry: comparison of isolation methods.Anal. Chem.47 , 1313–1321 (1975).
  • Ward ME , PolitzerIR, LaseterJL, AlamSQ: Gas chromatographic mass spectrometric evaluation of free organic acids in human saliva.Biomed. Mass Spectrom.3 , 77–80 (1976).
  • Jellum E : Profiling of human body fluids in healthy and diseased states using gas chromatography and mass spectrometry, with special reference to organic acids.J. Chromatogr.143 , 427–462 (1977).
  • Gates SC , DendramisN, SweeleyCC: Automated metabolic profiling of organic acids in human urine. I. Description of methods.Clin. Chem.24 , 1674–1679 (1978).
  • Banks JF Jr ., ShenS, WhitehouseCM, FennJB: Ultrasonically assisted electrospray ionization for LC/MS determination of nucleosides from a transfer RNA digest.Anal. Chem.66 , 406–414 (1994).
  • Kim HY , WantTC, MaYC: Liquid chromatography/mass spectrometry of phospholipids using electrospray ionization.Anal. Chem.66 , 3977–3982 (1994).
  • He H , McKayG, MidhaKK: Phase I and II metabolites of benztropine in rat urine and bile.Xenobiotica25 , 857–872 (1995).
  • Shulaev V : Metabolomics technology and bioinformatics.Brief. Bioinformatics7 , 128–139 (2006).
  • Huhman DV , SumnerLW: Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer.Phytochemistry59 , 347–360 (2002).
  • Buchholz A , HurlebausJ, WandreyC, TakorsR: Metabolomics: quantification of intracellular metabolite dynamics.Biomol. Eng.19 , 5–15 (2002).
  • Saghatelian A , TraugerSA, WantEJ, HawkindsEG, SiuzdakG, CravattBF: Assignment of endogenous substrates to enzymes by global metabolite profiling.Biochemistry43 , 14332–14339 (2004).
  • Ma S , ChowdhurySK, AltonKB: Application of mass spectrometry for metabolite identification.Curr. Drug Metab.7 , 503–523 (2006).
  • Shen Y , ZhangR, MooreRJet al.: Automated 20 kpsi RPLC–MS and MS–MS with chromatographic peak capacities of 1000–1500 and capabilities in proteomics and metabolomics.Anal. Chem.77 , 3090–3100 (2005).
  • Tolstikov VV , LommenA, NakanishiK, TanakaN, FiehnO: Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics.Anal. Chem.75 , 6737–6740 (2003).
  • Tolstikov VV , FiehnO, TanakaN: Application of liquid chromatography-mass spectrometry analysis in metabolomics: reversed-phase monolithic capillary chromatography and hydrophilic chromatography coupled to electrospray ionization-mass spectrometry.Methods Mol. Biol.358 , 141–155 (2007).
  • Tolstikov VV , FiehnO: Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry.Anal. Biochem.301 , 298–307 (2002).
  • Bajad SU , LuW, KimballEH, YuanJ, PetersonC, RabinowitzJD: Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mas spectrometry.J. Chromatogr. A1125 , 76–88 (2006).
  • Tang K , SmithRD: Physical/chemical separations in the breakup of highly charged droplets from electrosprays.J. Am. Soc. Mass Spectrom.12 , 343–347 (2001).
  • Schmidt A , KarasM, DülcksT: Effect of different solution flow rates on analyte ion signals in nano-ESI MS or: when does ESI turn into nano-ESI?J. Am. Soc. Mass Spectrom.14 , 492–500 (2003).
  • Tang K , PageJS, SmithRD: Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry.J. Am. Soc. Mass Spectrom.15 , 1416–1423 (2004).
  • Cech NB , EnkeCG: Relating electrospray ionization response to nonpolar character of small peptides.Anal. Chem.72 , 2717–2723 (2000).
  • Beaudry F , VachonP: Electrospray ionization suppression, a physical or a chemical phenomenon?Biomed. Chromatogr.20 , 200–205 (2006).
  • Giddings JC : United Separation Science.John Wiley Inc. & Sons, NY, USA (1991).
  • Dixon SP , PitfieldID, PerrettD: Comprehensive multi-dimensional liquid chromatographic separation in biomedical and pharmaceutical analysis: a review.Biomed. Chromatogr.20 , 508–529 (2006).
  • Stoll DR , CohenJD, CarrPW: Fast, comprehensive online two-dimensional high performance liquid chromatography through the use of high temperature ultra-fast gradient elution reversed-phase liquid chromatography.J. Chromatogr. A1122 , 123–137 (2006).
  • Shen Y , ZhaoR, BergerSJ, AndersonGA, RodriguezN, SmithRD: High-efficiency nanoscale liquid chromatography coupled online with mass spectrometry using nanoelectrospray ionization for proteomics.Anal. Chem.74 , 4235–4249 (2002).
  • Shen Y , JacobsJM, CampII DGet al.: Ultra-high-efficiency strong cation exchange LC/RPLC/MS–MS for high dynamic range characterization of the human plasma proteome.Anal. Chem.76 , 1134–1144 (2004).
  • van Deemter JJ , ZuiderwegFJ, KlinkenbergA: Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography.Chem. Eng. Sci.5 , 271–289 (1956).
  • Hosoya K , HiraN, YamamotoK, NishimuraM, TanakaN: High-performance polymer-based monolithic capillary column.Anal. Chem.78 , 5729–5735 (2006).
  • Zimmer JS , MonroeME, QianWJ, SmithRD: Advances in proteomics data analysis and display using an accurate mass and time tag approach.Mass Spectrom. Rev.25 , 450–482 (2006).
  • Livesay EA , ZhaoR, TangKet al.: Automated capillary HPLC systems for mass spectrometric analyses of proteomic and metabolomic samples. Poster presentation at the54th ASMS Conference on Mass Spectrometry, Seattle, WA, USA, May 28–June 1 (2006).
  • Ding J , ZhangQ, JiangHet al.: Automated high-pressure LC coupled with high mass measurement accuracy mass spectrometry for metabolomics. Poster presentation at the30th International Symposium on High Performance Liquid Phase Separations and Related Techniques, San Francisco, CA, USA, June 17–23 (2006).
  • Wilm M , MannM: Analytical properties of the nanoelectrospray ion source.Anal. Chem.68 , 1–8 (1996).
  • Bruins AP : Mass spectrometry with ion sources operating at atmospheric pressure.Mass Spectrom. Rev.10 , 53–77 (1991).
  • Abian J , OosterkampAJ, GelpfE: Comparison of conventional, narrow-bore and capillary liquid chromatography/mass spectrometry for electrospray ionization mass spectrometry: practical considerations.J. Mass. Spectrom.34 , 244–254 (1999).
  • Wilm MS , MannM: Electrospray and taylor-cone theory, Dole’s beam of macromolecules at last?Int. J. Mass Spectrom. Ion Processes136 , 167–180 (1994).
  • Fernández de la Mora J , LoscertalesIG: The current emitted by highly conducting Taylor cones.J. Fluid Mech.260 , 155–184 (1994).
  • Fenn JB : Ion formation from charged droplets – roles of geometry, energy, and time.J. Am. Soc. Mass Spectrom.4 , 524–535 (1993).
  • Dole M , MackLL, HinesRL, MobleyRC, FergusonLD, AliceMB: Molecular beams of macroions.J. Chem. Phys.49 , 2240–2249 (1968).
  • Bruins AP , CoveyTR, HenionJD: Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry.Anal. Chem.59 , 2642–2646 (1987).
  • Kebarle P , TangL: From ions in solution to ions in the gas phase – the mechanism of electrospray mass-spectrometry.Anal. Chem.65 , A972–A986 (1993).
  • Cech NB , EnkeCG: Practical implications of some recent studies in electrospray ionization fundamentals.Mass Spectrom. Rev.20 , 362–387 (2001).
  • Smith RD , LooJA, EdmondsCG, BarinagaCJ, UdsethHR: New developments in biochemical mass-spectrometry-electrospray ionization.Anal. Chem.62 , 882–899 (1990).
  • Lippert JA , XinB, WuN, LeeML: Fast ultrahigh-pressure liquid chromatography: on-column UV and time-of-flight mass spectrometric detections.J. Microcolumn Sep.11 , 631–643 (1999).
  • Martin SE , ShabanowitzJ, HuntDF, MartoJA: Subfemtomole MS and MS–MS peptide sequence analysis using nano-HPLC-ESI Fourier transform ion cyclotron resonance mass spectrometry.Anal. Chem.72 , 4266–4274 (2000).
  • Kelly RT , PageJS, LuoQet al.: Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrometry.Anal. Chem.78 , 7796–7801 (2006).
  • Luo Q , PageJS, TangK, SmithRD: MicroSPE-nanoLC-ESI–MS–MS using 10mm-i.d. silica-based monolithic columns for proteomics.Anal. Chem.79 , 540–545 (2007).
  • Bottcher C , vonRoepenack-Lahaye E, WillscherE, ScheelD, ClemensS: Evaluation of matrix effects in metabolite profiling based on capillary liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry.Anal. Chem.79 , 1507–1513 (2007).
  • Giovannini MG , PieracciniG, MonetiG: Isotope dilution mass spectrometry: definitive methods and reference materials in clinical chemistry.Ann. Ist. Super. Sanita27 , 401–410 (1991).
  • Dehennin L : Estrogens, androgens, and progestins in follicular fluid from preovulatory follicles: identification and quantification by gas chromatography/mass spectrometry associated with stable isotope dilution.Steroids55 , 181–184 (1990).
  • Wolthers BG , KraanGP: Clinical applications of gas chromatography and gas chromatography–mass spectrometry of steroids.J. Chromatogr. A843 , 247–274 (1999).
  • Birkemeyer C , LuedemannA, WagnerC, ErbanA, KopkaJ: Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling.Trends Biotechnol.23 , 28–33 (2005).
  • Lafaye A , LabarreJ, TabetJ-C, EzanE, JunotC: Liquid chromatography-mass spectrometry and 15N metabolic labeling for quantitative metabolic profiling.Anal. Chem.77 , 2026–2033 (2005).
  • Kim JK , HaradaK, BambaT, FukusakiE-I, KobayashiA: Stable isotope dilution-based accurate comparative quantification of nitrogen-containing metabolites in Arabidopsis thaliana T87 cells using in vivo15N-isotope enrichment.Biosci. Biotechnol. Biochem.69 , 1331–1340 (2005).
  • Engelsberger WR , ErbanA, KopkaJ, SchulzeWX: Metabolic labeling of plant cell cultures with K15NO3 as a tool for quatitative analysis of proteins and metabolites.Plant Methods2 , 1–11 (2006).
  • Uphaus RA , FlaumenhaftE, KatzJJ: A living organism of unusual isotopic composition: sequential and cumulative replacement of stable isotopes in Chlorella vulgaris.Biochim. Biophys. Acta141 , 625–632 (1967).
  • Kind T , FiehnO: Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm.BMC Bioinformatics7 , 1–10 (2006).
  • Broeckling CD , ReddyIR, DuranAL, ZhaoX, SumnerLW: MET-IDEA: data extraction tool for mass spectrometry-based metabolomics.Anal. Chem.78 , 4334–4341 (2006).
  • Bijlsma S , BobeldijkI, VerheijERet al.: Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation.Anal. Chem.78 , 567–574 (2006).
  • Katajamaa M , OrešičM: Processing methods for differential analysis of LC/MS profile data.BMC Bioinformatics6 , 1–12 (2005).
  • Nordstrom A , O‘MailleG, QinC, SiuzdakG: Nonlinear data alignment for UPLC–MS and HPLC–MSGC–MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum.Anal. Chem.78 , 3289–3295 (2006).
  • Tong G , WantEJ, SmithCet al.: Metabolite profiling with isotopically encoded chemical derivatization. Poster presentation at the53rd ASMS Conference on Mass Spectrometry, San Antonio, TX, USA, June 5–9 (2005).
  • Shortreed MR , LamosSM, FreyBLet al.: Ionizable isotopic labeling reagent for relative quantification of amine metabolites by mass spectrometry.Anal. Chem.78 , 6398–6403 (2006).
  • Purves RW , GabryelskiW, LiL: Investigation of the quantitative capabilities of an electrospray ionization ion trap linear time-of-flight mass spectrometry.Rapid Commun. Mass Spectrom.12 , 695–700 (1998).
  • Chelius D , BondarenkoPV: Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry.J. Proteome Res.1 , 317–323 (2002).
  • Wang W , ZhouH, LinHet al.: Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards.Anal. Chem.75 , 4818–4826 (2003).
  • Jaitly N , MonroeME, PetyukVA, ClaussTR, AdkinsJN, SmithRD: Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline.Anal. Chem.78 , 7397–7409 (2006).
  • Callister SJ , BarryRC, AdkinsJNet al.: Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics.J. Proteome Res.5 , 277–286 (2006).
  • Brown SC , KruppaG, DasseuxJL: Metabolomics applications of FT-ICR mass spectrometry.Mass Spectrom. Rev.24 , 223–231 (2005).
  • Zhang J , McCombieG, GuenatC, KnochenmussR: FT-ICR mass spectrometry in the drug discovery process.Drug Discov. Today10 , 635–642 (2005).
  • Marshall AG : Milestones in Fourier transform ion cyclotron resonance mass spectrometry technique development.Int. J. Mass Spectrom.200 , 331–356 (2000).
  • de Laeter JR , BöhlkeJK, deBièvre Pet al.: Atomic weights of the elements: review 2000.Pure Appl. Chem.75 , 683–800 (2003).
  • Aharoni A , deVos CHR, VerhoevenHAet al.: Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry.OMICS6 , 217–234 (2002).
  • Oikawa A , NakamuraY, OguraTet al.: Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies.Plant Physiol.142 , 398–413 (2006).
  • Shen Y , StrittmatterEF, ZhangRet al.: Making broad proteome protein measurements in 1–5 min using high-speed RPLC separations and high-accuracy mass measurements.Anal. Chem.77 , 7763–7773 (2005).
  • Zubarev RA , HåkanssonP, SundqvistB: Accuracy requirements for peptide characterization by monoisotopic molecular mass measurements.Anal. Chem.68 , 4060–4063 (1996).
  • Benecke C , GrundR, HohbergerR, KerberA, LaueR, WielandT: MOLGEN+, a generator of connectivity isomers and stereoisomers for molecular structure elucidation.Anal. Chim. Acta314 , 141–147 (1995).
  • Moco S , BinoRJ, VorstOet al.: A liquid chromatography-mass spectrometry-based metabolome database for tomato.Plant Physiol.141 , 1205–1218 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.