490
Views
0
CrossRef citations to date
0
Altmetric
Review

Biomarkers of Cholestasis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 437-454 | Received 16 Oct 2020, Accepted 01 Feb 2021, Published online: 12 Mar 2021

References

  • Pollock G , MinukGY. Diagnostic considerations for cholestatic liver disease. J. Gastroenterol. Hepatol.32(7), 1303–1309 (2017).
  • Jüngst C , LammertF. Cholestatic liver disease. Dig. Dis.31(1), 152–154 (2013).
  • Lu LG , ChenCW, ChengJet al. Consensus on the diagnosis and treatment of cholestatic liver diseases (2015, China). J. Dig. Dis.17(3), 137–154 (2016).
  • EASL . European Association for the Study of the Liver Clinical Practice Guidelines: management of cholestatic liver diseases. J. Hepatol.51(2), 237–267 (2009).
  • Nguyen KD , SundaramV, AyoubWS. Atypical causes of cholestasis. World J. Gastroenterol.20(28), 9418–9426 (2014).
  • Cao X , GaoY, ZhangWet al. Cholestasis morbidity rate in first-hospitalized patients with chronic liver disease in Shanghai. Chinese J. Hepatol.23(8), 569–573 (2015).
  • Onofrio FQ , HirschfieldGM. The pathophysiology of cholestasis and its relevance to clinical practice. Clin. Liver Dis.15(3), 110–114 (2020).
  • Marrer E , DieterleF. Impact of biomarker development on drug safety assessment. Toxicol. Appl. Pharmacol.243(2), 167–179 (2010).
  • Hardy T , MannDA. Epigenetics in liver disease: from biology to therapeutics. Gut.65(11), 1895–1905 (2016).
  • Strimbu K , TavelJA. What are biomarkers?Curr. Opin. HIV AIDS.5(6), 463–466 (2010).
  • Babrak LM , MenetskiJ, RebhanMet al. Traditional and digital biomarkers: two worlds apart? Digit Biomarkers 3(2), 92–102 (2019).
  • Levy C , LindorKD. Management of osteoporosis, fat-soluble vitamin deficiencies, and hyperlipidemia in primary biliary cirrhosis. Clin. Liver Dis.7(4), 901–910 (2003).
  • Phillips JR , AnguloP, PettersonT, LindorKD. Fat-soluble vitamin levels in patients with primary biliary cirrhosis. Am. J. Gastroenterol.96(9), 2745–2750 (2001).
  • Rogoveanu I , GheoneaDI, SaftoiuA, CiureaT. The role of imaging methods in identifying the causes of extrahepatic cholestasis. J. Gastrointest. Liver Dis.15(3), 265–271 (2006).
  • Cieszanowski A , ChomickaD, AndrzejewskaM, PruszyńskiB, PawlakJ, MustafaAM. Imaging techniques in patients with biliary obstruction. Med. Sci. Monit.6(6), 1197–1202 (2000).
  • Corpechot C . Utility of noninvasive markers of fibrosis in cholestatic liver diseases. Clin. Liver Dis.20(1), 143–158 (2016).
  • Patel K , SebastianiG. Limitations of noninvasive tests for assessment of liver fibrosis. JHEP Reports Innov. Hepatol.2(2), 100067 (2020).
  • Toosi AEK . Liver fibrosis: causes and methods of assessment, a review. Rom. J. Intern. Med.53(4), 304–314 (2015).
  • Frulio N , TrillaudH. Ultrasound elastography in liver. Diagn. Interv. Imaging94(5), 515–534 (2013).
  • Ramaiah SK . A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters. Food Chem. Toxicol.45(9), 1551–1557 (2007).
  • Lindblom P , RafterI, CopleyCet al. Isoforms of alanine aminotransferases in human tissues and serum-differential tissue expression using novel antibodies. Arch. Biochem. Biophys.466(1), 66–77 (2007).
  • Yang RZ , BlaileanuG, HansenBC, ShuldinerAR, GongDW. cDNA cloning, genomic structure, chromosomal mapping, and functional expression of a novel human alanine aminotransferase. Genomics79(3), 445–450 (2002).
  • Sharma U , PalD, PrasadR. Alkaline phosphatase: an overview. Indian J. Clin. Biochem.29(3), 269–278 (2014).
  • Accatino L , FigueroaC, PizarroM, SolísN. Enhanced biliary excretion of canalicular membrane enzymes in estrogen-induced and obstructive cholestasis, and effects of different bile acids in the isolated perfused rat liver. J. Hepatol.22(6), 658–670 (1995).
  • Deng JT , HoylaertsMF, DeBroe ME, Van HoofVO. Hydrolysis of membrane-bound liver alkaline phosphatase by GPI-PLD requires bile salts. Am. J. Physiol.271(4 Pt 1), G655–G663 (1996).
  • Hatoff DE , HardisonWGM. Bile acid-dependent secretion of alkaline phosphatase in rat bile. Hepatology.2(4), 433–439 (1982).
  • Vinken M , MaesM, VanhaeckeT, RogiersV. Drug-induced liver injury: mechanisms, types and biomarkers. Curr. Med. Chem.20(24), 3011–3021 (2013).
  • Price CP . Multiple forms of human serum alkaline phosphatase: detection and quantitation. Ann. Clin. Biochem.30(4), 355–372 (1993).
  • Sotil EU , JensenDM. Serum enzymes associated with cholestasis. Clin. Liver Dis.8(1), 41–54 (2004).
  • Hall P , CashJ. What is the real function of the Liver “Function” tests?Ulster Med. J.81(1), 30–36 (2012).
  • Rej R , ShawLM. Measurement of aminotransferases: part 1. Aspartate aminotransferase. Crit. Rev. Clin. Lab. Sci.21(2), 99–186 (1984).
  • Boyde TRC , LatnerAL. Starch-gel electrophoresis of trans-aminases in human-tissue extracts and sera. Biochem. J.82, 51 (1962).
  • Reichling JJ , KaplanMM. Clinical use of serum enzymes in liver disease. Dig. Dis. Sci.33(12), 1601–1614 (1988).
  • Hanigan MH , FriersonHF. Immunohistochemical detection of γ-glutamyl transpeptidase in normal human tissue. J. Histochem. Cytochem.44(10), 1101–1108 (1996).
  • Grisk O , KüsterU, AnsorgeS. The activity of γ-glutamyl transpeptidase (γ-gt) in populations of mononuclear cells from human peripheral blood. Biol. Chem. Hoppe. Seyler.374(1–6), 287–290 (1993).
  • Novogrodsky A , TateSS, MeisterA. γ Glutamyl transpeptidase, a lymphoid cell surface marker: relationship to blastogenesis, differentiation, and neoplasia. Proc. Natl Acad. Sci. USA73(7), 2414–2418 (1976).
  • Sheehan M , HaythornP. Predictive values of various liver function tests with respect to the diagnosis of liver disease. Clin. Biochem.12(6), 262–263 (1979).
  • Whitfield JB . Gamma glutamyl transferase. Crit. Rev. Clin. Lab. Sci.38(4), 263–355 (2001).
  • Dixon TF , PurdomM. Serum 5-nucleotidase. J. Clin. Pathol.7(4), 341–343 (1954).
  • Singh K . Evaluation and interpretation of biomarkers of liver diseases. Int. J. Res. Heal. Sci.1(3), 213–223 (2013).
  • Smith GS , WalterGL, WalkerRM. Clinical Pathology in Non-Clinical Toxicology Testing (3rd Edition). Elsevier,CA, USA (2013).
  • Shah R , JohnS. Cholestatic Jaundice (Cholestasis, Cholestatic Hepatitis).StatPearls Publishing, CA, USA (2020).
  • Kamisawa T , NakazawaT, TazumaSet al. Clinical practice guidelines for IgG4-related sclerosing cholangitis. J. Hepatobiliary. Pancreat. Sci.26(1), 9–42 (2019).
  • Chatterjee S , AnnaertP. Drug-induced cholestasis: mechanisms, models, and markers. Curr. Drug Metab.19(10), 808–818 (2018).
  • Tan D , GoodmanZD. Liver biopsy in primary biliary cholangitis: indications and interpretation. Clin. Liver Dis.22(3), 579–588 (2018).
  • Lefkowitch JH . Histological assessment of cholestasis. Clin. Liver Dis.8(1), 27–40 (2004).
  • Zen Y , HübscherSG, NakanumaY. Bile duct diseases. In: MacSween's Pathology of the Liver.Elsevier Inc., Oxford, UK, 515–593 (2018).
  • Gasmi B , KleinerDE. Liver histology: diagnostic and prognostic features. Clin. Liver Dis.24(1), 61–74 (2020).
  • Rockey DC , CaldwellSH, GoodmanZD, NelsonRC, SmithAD. Liver biopsy. Hepatology49(3), 1017–1044 (2009).
  • Tapper EB , LokASF. Use of liver imaging and biopsy in clinical practice. N. Engl. J. Med.377(8), 756–768 (2017).
  • The French METAVIR Cooperative Study Group . Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology20(1 Pt 1), 15–20 (1994).
  • Jansen PLM , GhallabA, VartakNet al. The ascending pathophysiology of cholestatic liver disease. Hepatology65(2), 722–738 (2017).
  • Reichert MC , HallRA, KrawczykM, LammertF. Genetic determinants of cholangiopathies: molecular and systems genetics. Biochim. Biophys. Acta – Mol. Basis Dis.1864(4), 1484–1490 (2018).
  • Krawczyk M , MüllenbachR, WeberSN, ZimmerV, LammertF. Genome-wide association studies and genetic risk assessment of liver diseases. Nat. Rev. Gastroenterol. Hepatol.7(12), 669–681 (2010).
  • Cordell HJ . Detecting gene–gene interactions that underlie human diseases. Nat. Rev. Genet.10(6), 392–404 (2009).
  • Zondervan KT , CardonLR. The complex interplay among factors that influence allelic association. Nat. Rev. Genet.5(2), 89–100 (2004).
  • Buch S , SchafmayerC, VölzkeHet al. A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat. Genet.39(8), 995–999 (2007).
  • Katsika D , MagnussonP, KrawczykMet al. Gallstone disease in Swedish twins: risk is associated with ABCG8 D19H genotype. J. Intern. Med.268(3), 279–285 (2010).
  • Stokes CS , KrawczykM, LammertF. Gallstones: environment, lifestyle and genes. Dig. Dis.29(2), 191–201 (2011).
  • Joshita S , UmemuraT, TanakaE, OtaM. Genetics and epigenetics in the pathogenesis of primary biliary cholangitis. Clin. J. Gastroenterol.11(1), 11–18 (2018).
  • Jiang X , KarlsenTH. Genetics of primary sclerosing cholangitis and pathophysiological implications. Nat. Rev. Gastroenterol. Hepatol.14(5), 279–295 (2017).
  • Karlsen TH , ChungBK. Genetic risk and the development of autoimmune liver disease. Dig. Dis.33(Suppl. 2), 13–24 (2015).
  • Trivedi PJ , HirschfieldGM. The immunogenetics of autoimmune cholestasis. Clin. Liver Dis.20(1), 15–31 (2016).
  • Liu JZ , HovJR, FolseraasTet al. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat. Genet.45(6), 670–675 (2013).
  • Karlsen TH , LammertF, ThompsonRJ. Genetics of liver disease: from pathophysiology to clinical practice. J. Hepatol.62(Suppl. 1), S6–S14 (2015).
  • Galoosian A , HanlonC, ZhangJ, HoltEW, YimamKK. Clinical updates in primary biliary cholangitis: trends, epidemiology, diagnostics, and new therapeutic approaches. J. Clin. Transl. Hepatol.8(1), 49–60 (2020).
  • Folseraas T , LiaskouE, AndersonCA, KarlsenTH. Genetics in PSC: what do the “risk genes” teach us?Clin. Rev. Allergy Immunol.48(2–3), 154–164 (2015).
  • Müllenbach R , LammertF. An update on genetic analysis of cholestatic liver diseases: digging deeper. Dig. Dis.29, 72–77 (2011).
  • Hirschfield GM , ChapmanRW, KarlsenTH, LammertF, LazaridisKN, MasonAL. The genetics of complex cholestatic disorders. Gastroenterology144(7), 1357–1374 (2013).
  • Waddington CH . The epigenotype 1942. Int. J. Epidemiol.41(1), 10–13 (2012).
  • Al Aboud NM , JialalI. Genetics, Epigenetic Mechanism. StatPearls Publishing, CA, USA. (2018).
  • Li J , JinH, WangX. Epigenetic biomarkers: potential applications in gastrointestinal cancers. ISRN Gastroenterol.2014, 464015 (2014).
  • Wang XW , HeegaardNHH, OrumH. MicroRNAs in liver disease. Gastroenterology142(7), 1431–1443 (2012).
  • García-Giménez JL , Seco-CerveraM, TollefsbolTOet al. Epigenetic biomarkers: current strategies and future challenges for their use in the clinical laboratory. Crit. Rev. Clin. Lab. Sci.54(7–8), 529–550 (2017).
  • Smith Z , RyersonD, KemperJK. Epigenomic regulation of bile acid metabolism: emerging role of transcriptional cofactors. Mol. Cell. Endocrinol.368(1–2), 59–70 (2013).
  • Ananthanarayanan M , LiY, SurapureddiSet al. Histone H3K4 trimethylation by MLL3 as part of ASCOM complex is critical for NR activation of bile acid transporter genes and is downregulated in cholestasis. Am. J. Physiol.300(5), G771 (2011).
  • Kim YC , JungH, SeokSet al. MicroRNA-210 promotes bile acid–induced cholestatic liver injury by targeting mixed-lineage leukemia-4 methyltransferase in mice. Hepatology71(6), 2118–2134 (2020).
  • Li X , LiuR. Long non-coding RNA H19 in the liver-gut axis: A diagnostic marker and therapeutic target for liver diseases. Exp. Mol. Pathol.115, 104472 (2020).
  • Xiao Y , LiuR, LiXet al. Long noncoding RNA H19 contributes to cholangiocyte proliferation and cholestatic liver fibrosis in biliary atresia. Hepatology70(5), 1658–1673 (2019).
  • Zhang Y , LiuC, BarbierOet al. Bcl2 is a critical regulator of bile acid homeostasis by dictating Shp and lncRNA H19 function. Sci. Rep.6(1), 1–11 (2016).
  • Blumenberg M . Introductory chapter: transcriptome analysis. In: Transcriptome Analysis.BlumenbergM ( Ed.). IntechOpen, London, UK, 1–5 (2019).
  • European Medicines Agency . Genomics genetics, transcriptomics and epigenetics subgroup report (2019).
  • Schena M , ShalonD, DavisRW, BrownPO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science (80-)270(5235), 467–470 (1995).
  • Yang X , KuiL, TangMet al. High-throughput transcriptome profiling in drug and biomarker discovery. Front. Genet.11, 19 (2020).
  • Mortazavi A , WilliamsBA, McCueK, SchaefferL, WoldB. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods5(7), 621–628 (2008).
  • Wang Z , GersteinM, SnyderM. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet.10(1), 57–63 (2009).
  • Blomme EAG , YangY, WaringJF. Use of toxicogenomics to understand mechanisms of drug-induced hepatotoxicity during drug discovery and development. Toxicol. Lett.186(1), 22–31 (2009).
  • de Longueville F , AtienzarFA, MarcqLet al. Use of a low-density microarray for studying gene expression patterns induced by hepatotoxicants on primary cultures of rat hepatocytes. Toxicol. Sci.75(2), 378–392 (2003).
  • Kienhuis AS , VitinsAP, PenningsJLAet al. Cyclosporine A treated in vitro models induce cholestasis response through comparison of phenotype-directed gene expression analysis of in vivo Cyclosporine A-induced cholestasis. Toxicol. Lett.221(3), 225–236 (2013).
  • Rodrigues RM , KolliparaL, ChaudhariUet al. Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures. Arch. Toxicol.92(6), 1939–1952 (2018).
  • Szalowska E , StoopenG, GrootMJ, HendriksenPJ, PeijnenburgAA. Treatment of mouse liver slices with cholestatic hepatotoxicants results in down-regulation of Fxr and its target genes. BMC Med. Genomics6, 39 (2013).
  • Van den Hof WFPM , CoonenMLJ, van HerwijnenMet al. Validation of gene expression profiles from cholestatic hepatotoxicants in vitro against human in vivo cholestasis. Toxicol. Vitr.44, 322–329 (2017).
  • Sun J , WangJ, ZhangN, YangR, ChenK, KongD. Identification of global mRNA expression profiles and comprehensive bioinformatic analyses of abnormally expressed genes in cholestatic liver disease. Gene.707, 9–21 (2019).
  • Ostrowski J , GorycaK, LazowskaIet al. Common functional alterations identified in blood transcriptome of autoimmune cholestatic liver and inflammatory bowel diseases. Sci. Rep.9(1), 7190 (2019).
  • Baba N , KobashiH, YamamotoKet al. Gene expression profiling in biliary epithelial cells of primary biliary cirrhosis using laser capture microdissection and cDNA microarray. Transl. Res.148(3), 103–113 (2006).
  • Tabibian JH , TrussoniCE, O'HaraSP, SplinterPL, HeimbachJK, LaRussoNF. Characterization of cultured cholangiocytes isolated from livers of patients with primary sclerosing cholangitis. Lab. Investig.94(10), 1126–1133 (2014).
  • Li Q , GeX, XuX, ZhongY, QieZ. Comparison of the gene expression profiles between gallstones and gallbladder polyps. Int. J. Clin. Exp. Pathol.7(11), 8016–8023 (2014).
  • Yang B , LiuB, BiP, WuT, WangQ, ZhangJ. An integrated analysis of differential miRNA and mRNA expressions in human gallstones. Mol. Biosyst.11(4), 1004–1011 (2015).
  • Pertea M . The human transcriptome: an unfinished story. Genes (Basel).3(3), 344–360 (2012).
  • Vogel C , MarcotteEM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet.13(4), 227–232 (2012).
  • Krishna RG , WoldF. Post-translational modification of proteins. Adv. Enzymol. Relat. Areas Mol. Biol.67, 265–298 (2006).
  • Barrier M , MirkesPE. Proteomics in developmental toxicology. Reprod. Toxicol.19(Spec. Iss. 3), 291–304 (2005).
  • Nallagangula KS , ShashidharKN, LakshmaiahV, MuninarayanaC. Evolution of proteomic biomarker for chronic liver disease: Promise into reality. J. Circ. Biomarkers.7, 1849454418777186 (2018).
  • Görg A , WeissW, DunnMJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics.4(12), 3665–3685 (2004).
  • Mas VR , FisherRA, ArcherKJ, MalufDG. Proteomics and liver fibrosis: Identifying markers of fibrogenesis. Expert Rev. Proteomics.6(4), 421–431 (2009).
  • Ciocan-Cartita CA , JurjA, BuseMet al. The relevance of mass spectrometry analysis for personalized medicine through its successful application in cancer “Omics”. Int. J. Mol. Sci.20(10), 2576 (2019).
  • Timp W , TimpG. Beyond mass spectrometry, the next step in proteomics. Sci. Adv.6(2), doi:10.1126/sciadv.aax8978 (2020).
  • Chandramouli K , QianP-Y. Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum. Genomics Proteomics2009, 239204 (2009).
  • Niu L , GeyerPE, MannM. Proteomics in the study of liver diseases. The Human Gut-Liver-Axis in Health and Disease, Springer (2018).
  • Parent R , BerettaL. Proteomics in the study of liver pathology. J. Hepatol.43(1), 177–183 (2005).
  • Farina A , DelhayeM, LescuyerP, DumonceauJM. Bile proteome in health and disease. Compr. Physiol.4(1), 91–108 (2014).
  • Teng PN , BatemanNW, HoodBL, ConradsTP. Advances in proximal fluid proteomics for disease biomarker discovery. J. Proteome Res.9(12), 6091–6100 (2010).
  • Lankisch TO , MetzgerJ, NegmAAet al. Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing cholangitis and choledocholithiasis. Hepatology53(3), 875–884 (2011).
  • Navaneethan U , LourdusamyV, VenkateshPGK, WillardB, SanakaMR, ParsiMA. Bile proteomics for differentiation of malignant from benign biliary strictures: A pilot study. Gastroenterol. Rep.3(2), 136–143 (2015).
  • Metzger J , NegmAA, PlentzRRet al. Urine proteomic analysis differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders. Gut62(1), 122–130 (2013).
  • Barbhuiya MA , SahasrabuddheNA, PintoSMet al. Comprehensive proteomic analysis of human bile. Proteomics11(23), 4443–4453 (2011).
  • He F . Human liver proteome project: plan, progress, and perspectives. Mol. Cell. Proteomics4(12), 1841–1848 (2005).
  • Tyers M , MannM. From genomics to proteomics. Nature422(6928), 193–197 (2003).
  • Griffin JL , ShockcorJP. Metabolic profiles of cancer cells. Nat. Rev. Cancer4(7), 551–561 (2004).
  • Oliver SG . Functional genomics: lessons from yeast. Philos. Trans. R. Soc. B Biol. Sci.357(1417), 17–23 (2002).
  • Nicholson JK , LindonJC, HolmesE. “Metabonomics”: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29(11), 1181–1189 (1999).
  • Beyoğlu D , IdleJR. Metabolomic and lipidomic biomarkers for premalignant liver disease diagnosis and therapy. Metabolites10(2), 50 (2020).
  • Nicholson JK , LindonJC. Systems biology: metabonomics. Nature.455, 1054–1056 (2008).
  • Sinclair K , DudleyE. Metabolomics and biomarker discovery. Adv. Exp. Med. Biol.1140, 613–633 (2019).
  • Yu M , ZhuY, CongQ, WuC. Metabonomics research progress on liver diseases. Can. J. Gastroenterol. Hepatol.2017, 8467192 (2017).
  • Gahlaut A , Vikas DahiyaMet al. Proteomics & metabolomics: mapping biochemical regulations. Drug Invent. Today.5(4), 321–326 (2013).
  • Aoki M , KonyaY, TakagakiTet al. Metabolomic investigation of cholestasis in a rat model using ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom.25(13), 1847–1852 (2011).
  • Chen Z , ZhuY, ZhaoYet al. Serum metabolomic profiling in a rat model reveals protective function of paeoniflorin against ANIT induced cholestasis. Phyther. Res.30(4), 654–662 (2016).
  • Cho JY , MatsubaraT, KangDWet al. Urinary metabolomics in Fxr-null mice reveals activated adaptive metabolic pathways upon bile acid challenge. J. Lipid Res.51(5), 1063–1074 (2010).
  • Fu K , WangC, GaoYet al. Metabolomics and lipidomics reveal the effect of hepatic Vps33b deficiency on bile acids and lipids metabolism. Front. Pharmacol.10, 276 (2019).
  • Long Y , DongX, YuanYet al. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress. J. Clin. Biochem. Nutr.57(1), 50–59 (2015).
  • Yamazaki M , MiyakeM, SatoHet al. Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats. Toxicol. Appl. Pharmacol.268(1), 79–89 (2013).
  • Yang R , ZhaoQ, HuDD, XiaoXR, HuangJF, LiF. Metabolomic analysis of cholestatic liver damage in mice. Food Chem. Toxicol.120, 253–260 (2018).
  • Lian JS , LiuW, HaoSRet al. A serum metabolomic analysis for diagnosis and biomarker discovery of primary biliary cirrhosis and autoimmune hepatitis. Hepatobiliary Pancreat. Dis. Int.14(4), 413–421 (2015).
  • Bell LN , WulffJ, ComerfordM, VuppalanchiR, ChalasaniN. Serum metabolic signatures of primary biliary cirrhosis and primary sclerosing cholangitis. Liver Int.35(1), 263–274 (2015).
  • Trottier J , BiałekA, CaronPet al. Metabolomic profiling of 17 bile acids in serum from patients with primary biliary cirrhosis and primary sclerosing cholangitis: A pilot study. Dig. Liver Dis.44(4), 303–310 (2012).
  • Vignoli A , OrlandiniB, TenoriLet al. Metabolic signature of primary biliary cholangitis and its comparison with celiac disease. J. Proteome Res.18(3), 1228–1236 (2019).
  • Chen X , ZhangX, XuBet al. The urinary bile acid profiling analysis of asymptomatic hypercholanemia of pregnancy: a pseudo-targeted metabolomics study. Clin. Chim. Acta497, 67–75 (2019).
  • Tang YM , WangJP, BaoWMet al. Urine and serum metabolomic profiling reveals that bile acids and carnitine may be potential biomarkers of primary biliary cirrhosis. Int. J. Mol. Med.36(2), 377–385 (2015).
  • Wishart DS , FeunangYD, MarcuAet al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res.46, D608–D617 (2018).
  • Beyoglu D , IdleJR. The metabolomic window into hepatobiliary disease. J. Hepatol.59(4), 842–858 (2013).
  • Ozer J , RatnerM, ShawM, BaileyW, SchomakerS. The current state of serum biomarkers of hepatotoxicity. Toxicology245(3), 194–205 (2008).
  • Pirola CJ , SookoianS. Multiomics biomarkers for the prediction of nonalcoholic fatty liver disease severity. World J. Gastroenterol.24(15), 1601–1615 (2018).
  • Schork N . Personalized medicine: time for one-person trials. Nature520(7549), 609–611 (2015).
  • Noor F . A shift in paradigm towards human biology-based systems for cholestatic-liver diseases. J. Physiol.593(23), 5043–5055 (2015).
  • Matthews H , HanisonJ, NirmalanN. “Omics”-informed drug and biomarker discovery: opportunities, challenges and future perspectives. Proteomes4(3), 28 (2016).
  • Vinken M , LandesmannB, GoumenouMet al. Development of an adverse outcome pathway from drug-mediated bile salt export pump inhibition to cholestatic liver injury. Toxicol. Sci.136(1), 97–106 (2013).
  • Villeneuve DL , CrumpD, LiaGarcia-Reyero Net al. Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol. Sci.142(2), 312–320 (2014).
  • Gijbels E , Vilas-BoasV, AnnaertP, VanhaeckeT, DevisscherL, VinkenM. Robustness testing and optimization of an adverse outcome pathway on cholestatic liver injury. Arch. Toxicol.94(4), 1151–1172 (2020).
  • Strimbu K , TavelJA. What are biomarkers?Curr. Opin. HIV AIDS5(6), 463–466 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.