308
Views
0
CrossRef citations to date
0
Altmetric
Review

Energy Metabolism in Nuclear Reprogramming

, &
Pages 715-729 | Published online: 21 Nov 2011

References

  • Terzic A , FolmesCD, Martinez-FernandezA, BehfarA. Regenerative medicine. on the vanguard of health care. Mayo Clin. Proc.86(7), 600–602 (2011).
  • Nelson TJ , BehfarA, YamadaS, Martinez-FernandezA, TerzicA. Stem cell platforms for regenerative medicine. Clin. Transl. Sci.2(3), 222–227 (2009).
  • Takahashi K , YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4), 663–676 (2006).
  • Nelson TJ , TerzicA. Induced pluripotent stem cells: an emerging theranostics platform. Clin. Pharmacol. Ther.89(5), 648–650 (2011).
  • Dzeja PP , TerzicA. Phosphotransfer networks and cellular energetics. J. Exp. Biol.206(Pt 12), 2039–2047 (2003).
  • Vander Heiden MG , CantleyLC, ThompsonCB. Understanding the Warburg effect. The metabolic requirements of cell proliferation. Science324(5930), 1029–1033 (2009).
  • Gatenby RA , GilliesRJ. Why do cancers have high aerobic glycolysis?Nat. Rev. Cancer4(11), 891–899 (2004).
  • Yu J , VodyanikMA, Smuga-OttoKet al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858), 1917–1920 (2007).
  • Wernig M , MeissnerA, ForemanRet al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448(7151), 318–324 (2007).
  • Gonzalez F , BoueS, Izpisua BelmonteJC. Methods for making induced pluripotent stem cells: reprogramming a la carte.Nat. Rev. Genet.12(4), 231–242 (2011).
  • Lowry WE , RichterL, YachechkoRet al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl Acad. Sci. USA 105(8), 2883–2888 (2008).
  • Mikkelsen TS , HannaJ, ZhangXet al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454(7200), 49–55 (2008).
  • Meissner A , WernigM, JaenischR. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat. Biotechnol.25(10), 1177–1181 (2007).
  • Okita K , IchisakaT, YamanakaS. Generation of germline-competent induced pluripotent stem cells. Nature448(7151), 313–317 (2007).
  • Maherali N , HochedlingerK. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell3(6), 595–605 (2008).
  • Martinez-Fernandez A , NelsonTJ, YamadaSet al. iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circ. Res. 105(7), 648–656 (2009).
  • Nelson TJ , Martinez-FernandezA, YamadaS, Perez-TerzicC, IkedaY, TerzicA. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation120(5), 408–416 (2009).
  • Wernig M , ZhaoJP, PruszakJet al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson‘s disease. Proc. Natl Acad. Sci. USA 105(15), 5856–5861 (2008).
  • Nelson TJ , Martinez-FernandezA, YamadaS, MaelAA, TerzicA, IkedaY. Induced pluripotent reprogramming from promiscuous human stemness-related factors. Clin. Transl. Sci.2(2), 118–126 (2009).
  • Folmes CD , NelsonTJ, Martinez-FernandezAet al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14(2), 264–271 (2011).
  • Panopoulos AD , Izpisua BelmonteJC. Anaerobicizing into pluripotency.Cell Metab.14(2), 143–144 (2011).
  • Westermann B . Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol.11(12), 872–884 (2010).
  • Zeuschner D , MildnerK, ZaehresH, ScholerHR. Induced pluripotent stem cells at nanoscale. Stem Cells Dev.19(5), 615–620 (2010).
  • Prigione A , FaulerB, LurzR, LehrachH, AdjayeJ. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells28(4), 721–733 (2010).
  • Suhr ST , ChangEA, TjongJet al. Mitochondrial rejuvenation after induced pluripotency. PLoS One 5(11), e14095 (2010).
  • Varum S , RodriguesAS, MouraMbet al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 6(6), e20914 (2011).
  • Armstrong L , TilgnerK, SaretzkiGet al. Human induced pluripotent stem cell lines show similar stress defense mechanisms and mitochondrial regulation to human embryonic stem cells. Stem Cells 28(4), 661–673 (2010).
  • Prigione A , LichtnerB, KuhlHet al. Human iPSCs harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining hESC-like metabolic reprogramming. Stem Cells 29(9), 1338–1348 (2011).
  • Hussein SM , BatadaNN, VuoristoSet al. Copy number variation and selection during reprogramming to pluripotency. Nature 471(7336), 58–62 (2011).
  • Lister R , PelizzolaM, KidaYSet al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336), 68–73 (2011).
  • Gore A , LiZ, FungHlet al. Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336), 63–67 (2011).
  • Mummery C . Induced pluripotent stem cells – a cautionary note. N. Engl. J. Med.364(22), 2160–2162 (2011).
  • Batten BE , AlbertiniDF, DucibellaT. Patterns of organelle distribution in mouse embryos during preimplantation development. Am. J. Anat.178(2), 204–213 (1987).
  • Lonergan T , BavisterB, BrennerC. Mitochondria in stem cells. Mitochondrion7(5), 289–296 (2007).
  • Rehman J . Empowering self-renewal and differentiation: the role of mitochondria in stem cells. J. Mol. Med. (Berlin)88(10), 981–986 (2010).
  • Facucho-Oliveira JM , St JohnJC. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation.Stem Cell Rev. Rep.5(2), 140–158 (2009).
  • Chung S , DzejaPP, FaustinoRS, Perez-TerzicC, BehfarA, TerzicA. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med.4(Suppl. 1), S60–S67 (2007).
  • Baharvand H , MatthaeiKI. The ultrastructure of mouse embryonic stem cells. Reprod. Biomed. Online7(3), 330–335 (2003).
  • Baharvand H , PiryaeiA, RohaniR, TaeiA, HeidariMH, HosseiniA. Ultrastructural comparison of developing mouse embryonic stem cell and in vivo derived cardiomyocytes. Cell Biol. Int.30(10), 800–807 (2006).
  • Cho YM , KwonS, PakYKet al. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem. Biophys. Res. Commun. 348(4), 1472–1478 (2006).
  • St John JC , Ramalho-SantosJ, GrayHLet al. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 7(3), 141–153 (2005).
  • Oh SK , KimHS, AhnHJet al. Derivation and characterization of new human embryonic stem cell lines. SNUhES1, SNUhES2, and SNUhES3. Stem Cells 23(2), 211–219 (2005).
  • Facucho-Oliveira JM , AldersonJ, SpikingsEC, EggintonS, St JohnJC. Mitochondrial DNA replication during differentiation of murine embryonic stem cells.J. Cell Sci.120(Pt. 22), 4025–4034 (2007).
  • Chung S , ArrellDK, FaustinoRS, TerzicA, DzejaPP. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J. Mol. Cell. Cardiol.48(4), 725–734 (2010).
  • Piccoli C , RiaR, ScrimaRet al. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J. Biol. Chem. 280(28), 26467–26476 (2005).
  • Chen CT , ShihYR, KuoTK, LeeOK, WeiYH. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells26(4), 960–968 (2008).
  • Passos JF , SaretzkiG, AhmedSet al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 5(5), e110 (2007).
  • Marion RM , StratiK, LiHet al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4(2), 141–154 (2009).
  • Chin MH , MasonMJ, XieWet al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5(1), 111–123 (2009).
  • Prigione A , AdjayeJ. Modulation of mitochondrial biogenesis and bioenergetic metabolism upon in vitro and in vivo differentiation of human ES and iPS cells. Int. J. Dev. Biol.54(11–12), 1729–1741 (2010).
  • Mathupala SP , KoYH, PedersenPL. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim. Biophys. Acta1797(6–7), 1225–1230 (2010).
  • Arora KK , PedersenPL. Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J. Biol. Chem.263(33), 17422–17428 (1988).
  • Bustamante E , MorrisHP, PedersenPL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J. Biol. Chem.256(16), 8699–8704 (1981).
  • Bustamante E , PedersenPL. High aerobic glycolysis of rat hepatoma cells in culture. Role of mitochondrial hexokinase. Proc. Natl Acad. Sci. USA74(9), 3735–3739 (1977).
  • Ko YH , PedersenPL, GeschwindJF. Glucose catabolism in the rabbit VX2 tumor model for liver cancer. Characterization and targeting hexokinase. Cancer Lett.173(1), 83–91 (2001).
  • Pereira DA Silva AP , El-BachaT, KyawNet al. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem. J. 417(3), 717–726 (2009).
  • Sugden MC , HolnessMJ. Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Arch. Physiol. Biochem.112(3), 139–149 (2006).
  • Deberardinis RJ , LumJJ, HatzivassiliouG, ThompsonCB. The biology of cancer. metabolic reprogramming fuels cell growth and proliferation. Cell Metab.7(1), 11–20 (2008).
  • Warburg O . On the origin of cancer cells. Science123(3191), 309–314 (1956).
  • Guppy M , GreinerE, BrandK. The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur. J. Biochem.212(1), 95–99 (1993).
  • Christofk HR , Vander HeidenMG, HarrisMHet al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184), 230–233 (2008).
  • Pfeiffer T , SchusterS, BonhoefferS. Cooperation and competition in the evolution of ATP-producing pathways. Science292(5516), 504–507 (2001).
  • Shaw RJ , KosmatkaM, BardeesyNet al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101(10), 3329–3335 (2004).
  • Lum JJ , BauerDE, KongMet al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120(2), 237–248 (2005).
  • Deberardinis RJ , MancusoA, DaikhinEet al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104(49), 19345–19350 (2007).
  • Hatzivassiliou G , ZhaoF, BauerDeet al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8(4), 311–321 (2005).
  • Wellen KE , HatzivassiliouG, SachdevaUM, BuiTV, CrossJR, ThompsonCB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science324(5930), 1076–1080 (2009).
  • Choudhary C , KumarC, GnadFet al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942), 834–840 (2009).
  • Huangfu D , MaehrR, GuoWet al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26(7), 795–797 (2008).
  • Huangfu D , OsafuneK, MaehrRet al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol. 26(11), 1269–1275 (2008).
  • Liang G , TaranovaO, XiaK, ZhangY. Butyrate promotes induced pluripotent stem cell generation. J. Biol. Chem.285(33), 25516–25521 (2010).
  • Mali P , ChouBK, YenJet al. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28(4), 713–720 (2010).
  • Friis RM , WuBP, ReinkeSN, HockmanDJ, SykesBD, SchultzMC. A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res.37(12), 3969–3980 (2009).
  • Cai L , SutterBM, LiB, TuBP. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell42(4), 426–437 (2011).
  • Kondoh H , LleonartME, GilJet al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 65(1), 177–185 (2005).
  • Yoshida Y , TakahashiK, OkitaK, IchisakaT, YamanakaS. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell5(3), 237–241 (2009).
  • Ezashi T , DasP, RobertsRM. Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl Acad. Sci. USA102(13), 4783–4788 (2005).
  • Powers DE , MillmanJR, HuangRB, ColtonCK. Effects of oxygen on mouse embryonic stem cell growth, phenotype retention, and cellular energetics. Biotechnol. Bioeng.101(2), 241–254 (2008).
  • Westfall SD , SachdevS, DasPet al. Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells. Stem Cells Dev. 17(5), 869–881 (2008).
  • Mohyeldin A , Garzon-MuvdiT, Quinones-HinojosaA. Oxygen in stem cell biology. A critical component of the stem cell niche. Cell Stem Cell7(2), 150–161 (2010).
  • Bensaad K , TsurutaA, SelakMAet al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1), 107–120 (2006).
  • Banito A , RashidST, AcostaJCet al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev. 23(18), 2134–2139 (2009).
  • Hong H , TakahashiK, IchisakaTet al. Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature 460(7259), 1132–1135 (2009).
  • Kawamura T , SuzukiJ, WangYVet al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460(7259), 1140–1144 (2009).
  • Li H , ColladoM, VillasanteAet al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460(7259), 1136–1139 (2009).
  • Marion RM , StratiK, LiHet al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460(7259), 1149–1153 (2009).
  • Zhu S , LiW, ZhouHet al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7(6), 651–655 (2010).
  • Chung S , DzejaPP, FaustinoRS, TerzicA. Developmental restructuring of the creatine kinase system integrates mitochondrial energetics with stem cell cardiogenesis. Ann. NY Acad. Sci.1147 , 254–263 (2008).
  • Perez-Terzic C , BehfarA, MeryA, Van DeursenJM, TerzicA, PuceatM. Structural adaptation of the nuclear pore complex in stem cell-derived cardiomyocytes.Circ. Res.92(4), 444–452 (2003).
  • Perez-Terzic C , FaustinoRS, BoorsmaBJet al. Stem cells transform into a cardiac phenotype with remodeling of the nuclear transport machinery. Nat. Clin. Pract. Cardiovasc. Med. 4(Suppl. 1), S68–S76 (2007).
  • Lonergan T , BrennerC, BavisterB. Differentiation-related changes in mitochondrial properties as indicators of stem cell competence. J. Cell. Physiol.208(1), 149–153 (2006).
  • Schieke SM , MaM, CaoLet al. Mitochondrial metabolism modulates differentiation and teratoma formation capacity in mouse embryonic stem cells. J. Biol. Chem. 283(42), 28506–28512 (2008).
  • Spitkovsky D , SasseP, KolossovEet al. Activity of complex III of the mitochondrial electron transport chain is essential for early heart muscle cell differentiation. FASEB J. 18(11), 1300–1302 (2004).
  • Kondoh H , LleonartME, NakashimaYet al. A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid. Redox. Signal. 9(3), 293–299 (2007).
  • Dzeja PP , ChungS, FaustinoRS, BehfarA, TerzicA. Developmental enhancement of adenylate kinase–AMPK metabolic signaling axis supports stem cell cardiac differentiation. PLoS One6(4), e19300 (2011).
  • Varum S , MomcilovicO, CastroC, Ben-YehudahA, Ramalho-SantosJ, NavaraCS. Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Res.3(2–3), 142–156 (2009).
  • Arrell DK , TerzicA. Network systems biology for drug discovery. Clin. Pharmacol. Ther.88(1), 120–125 (2010).
  • Faustino RS , ChiriacA, NiederlanderNJet al. Decoded calreticulin-deficient embryonic stem cell transcriptome resolves latent cardiophenotype. Stem Cells 28(7), 1281–1291 (2010).
  • Nicholson JK , LindonJC, HolmesE. ‘Metabonomics‘. Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data.Xenobiotica29(11), 1181–1189 (1999).
  • Fiehn O . Metabolomics: the link between genotypes and phenotypes. Plant Mol. Biol.48(1–2), 155–171 (2002).
  • Nicholson JK , LindonJC. Systems biology. Metabonomics. Nature455(7216), 1054–1056 (2008).
  • Cezar GG , QuamJA, SmithAmet al. Identification of small molecules from human embryonic stem cells using metabolomics. Stem Cells Dev. 16(6), 869–882 (2007).
  • Lindon JC , NicholsonJK. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Ann. Rev. Anal. Chem. (Palo Alto Calif.)1 , 45–69 (2008).
  • Lei Z , HuhmanDV, SumnerLW. Mass spectrometry strategies in metabolomics. J. Biol. Chem.286(29), 25435–25442 (2011).
  • Weckwerth W . Metabolomics. An integral technique in systems biology. Bioanalysis2(4), 829–836 (2010).
  • Griffiths WJ , KoalT, WangY, KohlM, EnotDP, DeignerHP. Targeted metabolomics for biomarker discovery. Angew. Chem. Int. Ed. Engl.49(32), 5426–5445 (2010).
  • Allen J , DaveyHM, BroadhurstDet al. High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat. Biotechnol. 21(6), 692–696 (2003).
  • Ellis DI , DunnWB, GriffinJL, AllwoodJW, GoodacreR. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics8(9), 1243–1266 (2007).
  • Kell DB , BrownM, DaveyHM, DunnWB, SpasicI, OliverSG. Metabolic footprinting and systems biology. The medium is the message. Nat. Rev. Microbiol.3(7), 557–565 (2005).
  • Jansen JF , ShamblottMJ, Van ZijlPCet al. Stem cell profiling by nuclear magnetic resonance spectroscopy. Magn. Reson. Med. 56(3), 666–670 (2006).
  • Turner WS , SeagleC, GalankoJAet al. Nuclear magnetic resonance metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in hyaluronan-matrix hydrogels. Stem Cells 26(6), 1547–1555 (2008).
  • Wang J , AlexanderP, WuL, HammerR, CleaverO, McknightSL. Dependence of mouse embryonic stem cells on threonine catabolism. Science325(5939), 435–439 (2009).
  • Yanes O , ClarkJ, WongDMet al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol. 6(6), 411–417 (2010).
  • Wilding M , DaleB, MarinoMet al. Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum. Reprod. 16(5), 909–917 (2001).
  • Im CN , KangNY, HaHHet al. A fluorescent rosamine compound selectively stains pluripotent stem cells. Angew. Chem. Int. Ed. Engl. 49(41), 7497–7500 (2010).
  • Kang NY , YunSW, HaHH, ParkSJ, ChangYT. Embryonic and induced pluripotent stem cell staining and sorting with the live-cell fluorescence imaging probe CDy1. Nat. Protoc.6(7), 1044–1052 (2011).
  • Cezar GG , DonleyEL. Stemina biomarker discovery. Regen. Med.3(5), 665–669 (2008).
  • West PR , WeirAM, SmithAM, DonleyEL, CezarGG. Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol. Appl. Pharmacol.247(1), 18–27 (2010).
  • Macintyre DA , Melguizo SanchisD, JimenezB, MorenoR, StojkovicM, Pineda-LucenaA. Characterisation of human embryonic stem cells conditioning media by 1H-nuclear magnetic resonance spectroscopy.PLoS One6(2), e16732 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.