185
Views
0
CrossRef citations to date
0
Altmetric
Review

Use of Cerebrospinal Fluid Biomarkers in Clinical Trials for Schizophrenia and Depression

, &
Pages 119-129 | Published online: 02 Feb 2012

References

  • DiNunzio JC , WilliamsRO 3rd. CNS disorders – current treatment options and the prospects for advanced therapies. Drug Dev. Ind. Pharm.34(11), 1141–1167 (2008).
  • Flood DG , MarekGJ, WilliamsM. Developing predictive CSF biomarkers: a challenge critical to success in Alzheimer‘s disease and neuropsychiatric translational medicine. Biochem. Pharmacol.81(12), 1422–1234 (2011).
  • Feuerstein GZ , RuffoloRR Jr, StilesG, WalshFS, RutkowskiJL. Translational medicine perspectives of biomarkers in drug discovery and development: part 1 target selection and validation – biomarkers take center stage. Am. Drug Discov.2(5), 36–43 (2007).
  • Feuerstein GZ , DormerC, RuffoloRR Jr, RutkowskiJL, WalshFS, HurkoO. Translational medicine perspectives in drug discovery and development part 2: target compound interaction the vastly neglected biomarkers contributing to early clinical development failure. Am. Drug Discov.3(2), 48–54 (2008).
  • Feuerstein GZ , DormerC, WalshFS, HurkoO, RutkowskiJL. Translational medicine perspectives in drug discovery and development part 3: disease biomarkers, disease modifying biomarkers, disease labeling biomarkers and surrogate biomarkers. Am. Drug Discov.2(4), 36–41 (2008).
  • Tumani H , TeunissenC, SussmuthS, OttoM, LudolphAC, BrettschneiderJ. Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases. Exp. Rev. Mol. Diagn.8(4), 479–494 (2008).
  • Redzic Z . Molecular biology of the blood–brain and the blood–cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS8(1), 3 (2011).
  • Peskind E , NordbergA, Darreh-ShoriT, SoininenH. Safety of lumbar puncture procedures in patients with Alzheimer‘s disease. Curr. Alzheimer Res.6(3), 290–292 (2009).
  • Arendt K , DemaerschalkBM, WingerchukDM, CamannW. Atraumatic lumbar puncture needles: after all these years, are we still missing the point?Neurologist15(1), 17–20 (2009).
  • Blennow K , ZetterbergH. Use of CSF biomarkers in Alzheimer‘s disease clinical trials. J. Nutr. Health Aging13(4), 358–361 (2009).
  • Lewczuk P , BeckG, GanslandtOet al. International quality control survey of neurochemical dementia diagnostics. Neurosci. Lett. 409(1), 1–4 (2006).
  • Craddock RM , HuangJT, JacksonEet al. Increased α-defensins as a blood marker for schizophrenia susceptibility. Mol. Cell Proteomics 7(7), 1204–1213 (2008).
  • Mattsson N . CSF biomarkers in neurodegenerative diseases. Clin. Chem. Lab. Med.49(3), 345–352 (2011).
  • Prvulovic D , HampelH. Amyloid β (Aβ) and phospho-tau (p-tau) as diagnostic biomarkers in Alzheimer‘s disease. Clin. Chem. Lab. Med.49(3), 367–374 (2011).
  • Domenici E , WilleDR, TozziFet al. Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case–control collections. PLoS ONE 5(2), e9166 (2010).
  • Takahashi M , HayashiH, WatanabeYet al. Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures. Schizophr. Res. 119(1–3), 210–218 (2010).
  • Torres KC , SouzaBR, MirandaDMet al. The leukocytes expressing DARPP-32 are reduced in patients with schizophrenia and bipolar disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 33(2), 214–219 (2009).
  • Blier P , de MontignyC. Antidepressant monoamine oxidase inhibitors enhance serotonin but not norepinephrine neurotransmission. Psychopharmacol. Ser.3, 127–134 (1987).
  • Ross RJ , ZavadilAP 3rd, CalilHMet al. Effects of desmethylimipramine on plasma norepinephrine, pulse, and blood pressure. Clin. Pharmacol. Ther.33(4), 429–437 (1983).
  • Veith RC , LewisN, LinaresOAet al. Sympathetic nervous system activity in major depression. Basal and desipramine-induced alterations in plasma norepinephrine kinetics. Arch. Gen. Psychiatry 51(5), 411–422 (1994).
  • Sharma A , GoldbergMJ, CerimeleBJ. Pharmacokinetics and safety of duloxetine, a dual-serotonin and norepinephrine reuptake inhibitor. J. Clin. Pharmacol.40(2), 161–167 (2000).
  • Wong DT , BymasterFP, MayleDA, ReidLR, KrushinskiJH, RobertsonDW. LY248686, a new inhibitor of serotonin and norepinephrine uptake. Neuropsychopharmacology8(1), 23–33 (1993).
  • Vincent S , BieckPR, GarlandEMet al. Clinical assessment of norepinephrine transporter blockade through biochemical and pharmacological profiles. Circulation 109(25), 3202–3207 (2004).
  • Leibowitz MEL , LinQ, LedentEet al. Use of a biomarker of norepinephrine transporter (NET) inhibition to assess atomoxetine effects during clinically recommended dosing. Presented at: Proceedings of the 18th ECNP Congress. Amsterdam, The Netherlands, 22–26 October 2005.
  • Michelson D , AdlerL, SpencerTet al. Atomoxetine in adults with ADHD: two randomized, placebo-controlled studies. Biol. Psychiatry 53(2), 112–120 (2003).
  • Bymaster FP , KatnerJS, NelsonDLet al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27(5), 699–711 (2002).
  • Gemkow MJ , DavenportAJ, HarichS, EllenbroekBA, CesuraA, HallettD. The histamine H3 receptor as a therapeutic drug target for CNS disorders. Drug Discov. Today14(9–10), 509–515 (2009).
  • Giannoni P , MedhurstAD, PassaniMBet al. Regional differential effects of the novel histamine H3 receptor antagonist 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-p yridinecarboxamide hydrochloride (GSK189254) on histamine release in the central nervous system of freely moving rats. J. Pharmacol. Exp. Ther. 332(1), 164–172 (2010).
  • Soares H , WagerT, SchmidtAet al. H3 receptor antagonism increases methylhistamine levels in the cerebrospinal fluid of dogs and healthy human volunteers. Alzheimers Dement. 5(4), 254–255 (2009).
  • Sellin AK , ShadM, TammingaC. Muscarinic agonists for the treatment of cognition in schizophrenia. CNS Spectr.13(11), 985–996 (2008).
  • Nitsch RM , SlackBE, WurtmanRJ, GrowdonJH. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science258(5080), 304–307 (1992).
  • Fisher A , MichaelsonDM, BrandeisR, HaringR, ChapmanS, PittelZ. M1 muscarinic agonists as potential disease-modifying agents in Alzheimer‘s disease. Rationale and perspectives. Ann. NY Acad. Sci.920, 315–320 (2000).
  • Beach TG , WalkerDG, PotterPE, SueLI, FisherA. Reduction of cerebrospinal fluid amyloid β after systemic administration of M1 muscarinic agonists. Brain Res.905(1–2), 220–223 (2001).
  • Hock C , MaddalenaA, RaschigAet al. Treatment with the selective muscarinic m1 agonist talsaclidine decreases cerebrospinal fluid levels of A β 42 in patients with Alzheimer‘s disease. Amyloid 10(1), 1–6 (2003).
  • Maes M , MeltzerHY, BosmansEet al. Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J. Affect. Disord. 34(4), 301–309 (1995).
  • Price LH , RasmussenSA. Stress and depression: is neuroimmunology the missing link?Harv. Rev. Psychiat.5(2), 108–112 (1997).
  • Connor TJ , KellyJP, LeonardBE. Forced swim test-induced endocrine and immune changes in the rat: effect of subacute desipramine treatment. Pharmacol. Biochem. Behav.59(1), 171–177 (1998).
  • Maier SF , WatkinsLR. Intracerebroventricular interleukin-1 receptor antagonist blocks the enhancement of fear conditioning and interference with escape produced by inescapable shock. Brain Res.695(2), 279–282 (1995).
  • Asnis GM , De La GarzaR 2nd. Interferon-induced depression in chronic hepatitis C: a review of its prevalence, risk factors, biology, and treatment approaches. J. Clin.Gastroenterol.40(4), 322–335 (2006).
  • Lotrich FE , RabinovitzM, GirondaP, PollockBG. Depression following pegylated interferon-α: characteristics and vulnerability. J. Psychosom. Res.63(2), 131–135 (2007).
  • Malek-Ahmadi P . Cytokines and etiopathogenesis of pervasive developmental disorders. Med. Hypothes.56(3), 321–324 (2001).
  • Levine J , BarakY, ChengappaKN, RapoportA, RebeyM, BarakV. Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology40(4), 171–176 (1999).
  • Stubner S , SchonT, PadbergFet al. Interleukin-6 and the soluble IL-6 receptor are decreased in cerebrospinal fluid of geriatric patients with major depression: no alteration of soluble gp130. Neurosci. Lett. 259(3), 145–148 (1999).
  • Carpenter LL , HeningerGR, MalisonRT, TyrkaAR, PriceLH. Cerebrospinal fluid interleukin (IL)-6 in unipolar major depression. J. Affect. Disord.79(1–3), 285–289 (2004).
  • Lindqvist D , JanelidzeS, HagellPet al. Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol. Psychiat. 66(3), 287–292 (2009).
  • Raison CL , BorisovAS, MajerMet al. Activation of central nervous system inflammatory pathways by interferon-α: relationship to monoamines and depression. Biol. Psychiat. 65(4), 296–303 (2009).
  • Brambilla F , MaggioniM. Blood levels of cytokines in elderly patients with major depressive disorder. Acta Psychiatrica Scand.97(4), 309–313 (1998).
  • Haack M , Hinze-SelchD, FenzelTet al. Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission: effects of confounding factors and diagnosis. J. Psychiatr. Res. 33(5), 407–418 (1999).
  • Lanquillon S , KriegJC, Bening-Abu-ShachU, VedderH. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology22(4), 370–379 (2000).
  • Kubera M , KenisG, BosmansEet al. Plasma levels of interleukin-6, interleukin-10, and interleukin-1 receptor antagonist in depression: comparison between the acute state and after remission. Pol. J. Pharmacol. 52(3), 237–241 (2000).
  • Kagaya A , KugayaA, TakebayashiMet al. Plasma concentrations of interleukin-1β, interleukin-6, soluble interleukin-2 receptor and tumor necrosis factor α of depressed patients in Japan. Neuropsychobiology 43(2), 59–62 (2001).
  • Hirohata S , KanaiY, MitsuoA, TokanoY, HashimotoH. Accuracy of cerebrospinal fluid IL-6 testing for diagnosis of lupus psychosis. A multicenter retrospective study. Clin. Rheumatol.28(11), 1319–1323 (2009).
  • Fragoso-Loyo H , Richaud-PatinY, Orozco-NarvaezAet al. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum. 56(4), 1242–1250 (2007).
  • Vila N , ChamorroA, CastilloJ, DavalosA. Glutamate, interleukin-6, and early clinical worsening in patients with acute stroke. Stroke32(5), 1234–1237 (2001).
  • Torre D , ZeroliC, FerraroGet al. Cerebrospinal fluid levels of IL-6 in patients with acute infections of the central nervous system. Scand. J. Infect. Dis. 24(6), 787–791 (1992).
  • Donato R , SorciG, RiuzziFet al. S100B‘s double life: intracellular regulator and extracellular signal. Biochim. Biophys. Acta 1793(6), 1008–1022 (2009).
  • Rothermundt M , FalkaiP, PonathGet al. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol. Psychiatry 9(10), 897–899 (2004).
  • Steiner J , BielauH, BernsteinHG, BogertsB, WunderlichMT. Increased cerebrospinal fluid and serum levels of S100B in first-onset schizophrenia are not related to a degenerative release of glial fibrillar acidic protein, myelin basic protein and neurone-specific enolase from glia or neurones. J. Neurol. Neurosurg. Psychiatry77(11), 1284–1287 (2006).
  • Schwarz E , BahnS. Cerebrospinal fluid: identification of diagnostic markers for schizophrenia. Exp. Rev. Mol. Diagn.8(2), 209–216 (2008).
  • Thompson PM , RosenbergerC, QuallsC. CSF SNAP-25 in schizophrenia and bipolar illness. A pilot study. Neuropsychopharmacology21(6), 717–722 (1999).
  • Kozlovsky N , RegenoldWT, LevineJ, RapoportA, BelmakerRH, AgamG. GSK-3β in cerebrospinal fluid of schizophrenia patients. J. Neural Transm.111(8), 1093–1098 (2004).
  • Li S , WuH, GuoH, ZhaoZ. Neuron-specific enolase and myelin basic protein in cerebrospinal fluid of patients with first episode schizophrenia. J. Huazhong Univ. Sci. Technol. Med. Sci.26(2), 228–230 (2006).
  • Fell MJ , WitkinJM, FalconeJFet al. N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)- 1-methyl-1H-imidazole-4-carboxamide (THIIC), a novel metabotropic glutamate 2 potentiator with potential anxiolytic/antidepressant properties: in vivo profiling suggests a link between behavioral and central nervous system neurochemical changes. J. Pharmacol. Exp. Ther.336(1), 165–177 (2011).
  • Lowe JA > 3rd, HouX, SchmidtCet al. The discovery of a structurally novel class of inhibitors of the type 1 glycine transporter. Bioorg. Med. Chem. Lett.19(11), 2974–2976 (2009).
  • Huang JT , LewekeFM, OxleyDet al. Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis. PLoS Med. 3(11), e428 (2006).
  • Huang JT , LewekeFM, TsangTMet al. CSF metabolic and proteomic profiles in patients prodromal for psychosis. PLoS One 2(8), e756 (2007).
  • Craig-Schapiro R , KuhnM, XiongCet al. Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer‘s disease diagnosis and prognosis. PLoS One 6(4), e18850 (2011).
  • Trojanowski JQ , VandeersticheleH, KoreckaMet al. Update on the biomarker core of the Alzheimer‘s Disease Neuroimaging Initiative subjects. Alzheimers Dement. 6(3), 230–238 (2010).
  • Dettmer K , AronovPA, HammockBD. Mass spectrometry-based metabolomics. Mass Spectrom. Rev.26(1), 51–78 (2007).
  • Nicholson JK , LindonJC, HolmesE. ‘Metabonomics‘: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29(11), 1181–1189 (1999).
  • Holmes E , TsangTM, HuangJTet al. Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med. 3(8), e327 (2006).
  • Ben-Shachar D , LaifenfeldD. Mitochondria, synaptic plasticity, and schizophrenia. Int. Rev. Neurobiol.59, 273–296 (2004).
  • Kato T , KatoN. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord.2(3 Pt 1), 180–190 (2000).
  • Quiroz JA , GrayNA, KatoT, ManjiHK. Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology33(11), 2551–2565 (2008).
  • Rezin GT , AmboniG, ZugnoAI, QuevedoJ, StreckEL. Mitochondrial dysfunction and psychiatric disorders. Neurochem. Res.34(6), 1021–1029 (2009).
  • Regenold WT , PhatakP, MaranoCM, SassanA, ConleyRR, KlingMA. Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol. Psychiatry65(6), 489–494 (2009).
  • Simonsen AH , BechS, LaursenIet al. Proteomic investigations of the ventriculo-lumbar gradient in human CSF. J. Neurosci. Methods 191(2), 244–248 (2010).
  • Tarnaris A , TomaAK, ChapmanMDet al. Rostrocaudal dynamics of CSF biomarkers. Neurochem. Res. 36(3), 528–532 (2011).
  • Shaw LM , VandersticheleH, Knapik-CzajkaMet al. Cerebrospinal fluid biomarker signature in Alzheimer‘s disease neuroimaging initiative subjects. Ann.Neurol. 65(4), 403–413 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.