569
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Lipids in Alzheimer’s disease and their potential for therapy

, &
Pages 65-78 | Published online: 18 Jan 2017

References

  • Holtzman DM, Morris JC, Goate AM. Alzheimer’s disease: the challenge of the second century. Sci. Transl. Med. 3(77), 77sr71 (2011).
  • Di Paolo G, Kim TW. Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat. Rev. Neurosci. 12(5), 284–296 (2011).
  • Mielke MM, Lyketsos CG. Lipids and the pathogenesis of Alzheimer’s disease: is there a link? Int. Rev. Psychiatry 18(2), 173–186 (2006).
  • Alzheimer A. Über einen eigenartigen schweren Erkrankungsprozeß der Hirnrinde. Neurologisches Zentralblatt 23, 1129–1136 (1906).
  • Walter J. Gamma-secretase, apolipoprotein E and cellular cholesterol metabolism. Curr. Alzheimer Res. doi:BSP/CAR/E-Pub/00047 (2011) (Epub ahead of print).
  • Teoh CL, Griffin MD, Howlett GJ. Apolipoproteins and amyloid fibril formation in atherosclerosis. Protein Cell 2(2), 116–127 (2011).
  • He X, Huang Y, Li B, Gong CX, Schuchman EH. Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol. Aging 31(3), 398–408 (2010).
  • Conti E, Galimberti G, Piazza F, Raggi ME, Ferrarese C. Increased soluble APPalpha, Abeta 1–42, and anti-Abeta 1–42 antibodies in plasma from down syndrome patients. Alzheimer Dis. Assoc. Disord. 24(1), 96–100 (2010).
  • Vassar R. Beta-secretase (BACE) as a drug target for Alzheimer’s disease. Adv. Drug Deliv. Rev. 54(12), 1589–1602 (2002).
  • Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C. Reconstitution of gamma-secretase activity. Nat. Cell. Biol. 5(5), 486–488 (2003).
  • Ashe KH. A tale about tau. N. Engl. J. Med. 357(9), 933–935 (2007).
  • Rapoport SI. In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling. J. Mol. Neurosci. 16(2–3), 243–261; discussion 279–284 (2001).
  • Haughey NJ, Bandaru VV, Bae M, Mattson MP. Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis. Biochim. Biophys. Acta 1801(8), 878–886 (2010).
  • Prasad MR, Lovell MA, Yatin M, Dhillon H, Markesbery WR. Regional membrane phospholipid alterations in Alzheimer’s disease. Neurochem. Res. 23(1), 81–88 (1998).
  • Cutler RG, Haughey NJ, Tammara A et al. Dysregulation of sphingolipid and sterol metabolism by ApoE4 in HIV dementia. Neurology 63(4), 626–630 (2004).
  • Haughey NJ. Sphingolipids in neurodegeneration. Neuromolecular Med. 12(4), 301–305 (2010). Effectively describes the role of sphingolipids in neurodegenerative processes.
  • Haughey NJ, Cutler RG, Tamara A et al. Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann. Neurol. 55(2), 257–267 (2004).
  • Darios F, Wasser C, Shakirzyanova A et al. Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis. Neuron 62(5), 683–694 (2009).
  • Blochl A, Thoenen H. Localization of cellular storage compartments and sites of constitutive and activity-dependent release of nerve growth factor (NGF) in primary cultures of hippocampal neurons. Mol. Cell. Neurosci. 7(3), 173–190 (1996).
  • Jeon HJ, Lee DH, Kang MS et al. Dopamine release in PC12 cells is mediated by Ca2+-dependent production of ceramide via sphingomyelin pathway. J. Neurochem. 95(3), 811–820 (2005).
  • Numakawa T, Nakayama H, Suzuki S et al. Nerve growth factor-induced glutamate release is via p75 receptor, ceramide, and Ca2+ from ryanodine receptor in developing cerebellar neurons. J. Biol. Chem. 278(42), 41259–41269 (2003).
  • Cutler RG, Kelly J, Storie K et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl Acad. Sci. USA 101(7), 2070–2075 (2004).
  • Joseph JA, Denisova NA, Bielinski D, Fisher DR, Shukitt-Hale B. Oxidative stress protection and vulnerability in aging: putative nutritional implications for intervention. Mech. Ageing Dev. 116(2–3), 141–153 (2000).
  • Han X, D MH, Mckeel DW Jr, Kelley J, Morris JC. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J. Neurochem. 82(4), 809–818 (2002).
  • Satoi H, Tomimoto H, Ohtani R et al. Astroglial expression of ceramide in Alzheimer’s disease brains: a role during neuronal apoptosis. Neuroscience 130(3), 657–666 (2005).
  • Mielke MM, Haughey NJ, Ratnam BVV et al. Plasma ceramides are altered in mild cognitive impairment and predict cognitive decline and hippocampal volume loss. Alzheimers Dement. 6(5), 378–385 (2010). Describes a plausible new marker for the prediction of Alzheimer’s disease in an early state.
  • Slotte JP. Cholesterol–sphingomyelin interactions in cells – effects on lipid metabolism. Subcell. Biochem. 28, 277–293 (1997).
  • Ahmed SN, Brown DA, London E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36(36), 10944–10953 (1997).
  • Yu ZF, Nikolova-Karakashian M, Zhou D, Cheng G, Schuchman EH, Mattson MP. Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J. Mol. Neurosci. 15(2), 85–97 (2000).
  • Opreanu M, Tikhonenko M, Bozack S et al. The unconventional role of acid sphingomyelinase in regulation of retinal microangiopathy in diabetic human and animal models. Diabetes 60(9), 2370–2378 (2011).
  • Grimm MO, Grimm HS, Pätzold AJ et al. Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nat. Cell Biol. 7(11), 1118–1123 (2005).
  • Sawamura N, Ko M, Yu W et al. Modulation of amyloid precursor protein cleavage by cellular sphingolipids. J. Biol. Chem. 279(12), 11984–11991 (2004).
  • Huang Y, Tanimukai H, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Elevation of the level and activity of acid ceramidase in Alzheimer’s disease brain. Eur. J. Neurosci. 20(12), 3489–3497 (2004).
  • Hung WC, Chang HC, Chuang LY. Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells. Biochem. J. 338(Pt 1), 161–166 (1999).
  • Sweeney EA, Inokuchi J, Igarashi Y. Inhibition of sphingolipid induced apoptosis by caspase inhibitors indicates that sphingosine acts in an earlier part of the apoptotic pathway than ceramide. FEBS Lett. 425(1), 61–65 (1998).
  • Hagen N, Hans M, Hartmann D, Swandulla D, van Echten-Deckert G. Sphingosine-1-phosphate links glycosphingolipid metabolism to neurodegeneration via a calpain-mediated mechanism. Cell Death Differ. 18(8), 1356–1365 (2011).
  • van Echten-Deckert G, Herget T. Sphingolipid metabolism in neural cells. Biochim. Biophys. Acta 1758(12), 1978–1994 (2006).
  • Hagen N, Van Veldhoven PP, Proia RL, Park H, Merrill AH Jr, Van Echten-Deckert G. Subcellular origin of sphingosine 1-phosphate is essential for its toxic effect in lyase-deficient neurons. J. Biol. Chem. 284(17), 11346–11353 (2009).
  • Billich A, Bornancin F, Devay P, Mechtcheriakova D, Urtz N, Baumruker T. Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J. Biol. Chem. 278(48), 47408–47415 (2003).
  • Brinkmann V, Davis MD, Heise CE et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem. 277(24), 21453–21457 (2002).
  • Lahiri S, Park H, Laviad EL, Lu X, Bittman R, Futerman AH. Ceramide synthesis is modulated by the sphingosine analog FTY720 via a mixture of uncompetitive and noncompetitive inhibition in an Acyl-CoA chain length-dependent manner. J. Biol. Chem. 284(24), 16090–16098 (2009). Describes the inhibitory effects of a synthetic substance on ceramide synthesis.
  • Berdyshev EV, Gorshkova I, Skobeleva A et al. FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. J. Biol. Chem. 284(9), 5467–5477 (2009).
  • Amenta F, Tayebati SK. Pathways of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dysfunction. Curr. Med. Chem. 15(5), 488–498 (2008).
  • Higgins JP, Flicker L. Lecithin for dementia and cognitive impairment. Cochrane Database Syst. Rev. 3, CD001015 (2003).
  • Heron DS, Shinitzky M, Hershkowitz M, Samuel D. Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes. Proc. Natl Acad. Sci. USA 77(12), 7463–7467 (1980).
  • Bourre JM, Dumont O, Piciotti M et al. Essentiality of omega 3 fatty acids for brain structure and function. World Rev. Nutr. Diet 66, 103–117 (1991).
  • Astarita G, Piomelli D. Towards a whole-body system [multi-organ] lipidomics in Alzheimer’s disease. Prostaglandins Leukot. Essent. Fatty Acids 85(5), 197–203 (2011).
  • Green KN, Martinez-Coria H, Khashwji H et al. Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving persenilin 1 levels. J. Neurosci. 27, 4385–4395 (2007).
  • Hooijmans CR, Rutters F, Dederen PJ et al. Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA) diet or cholesterol enriched typical western diet (TWD). Neurobiol. Dis. 28, 16–29 (2007).
  • Oksman M, Iivonen H, Hogyes E et al. Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on beta-amyloid accumulation in APP/PS1 transgenic mice. Neurobiol. Dis. 23, 563–572 (2006). Describes the impact of fatty acids on amyloid-b accumulation.
  • Lukiw WJ, Cui JG, Marcheselli VL et al. A role for docosahexaenoic acid-derived neuroprotecting D1 in neural cell survival and Alzheimer’s disease. J. Clin. Invest. 115, 2774–2783 (2005).
  • Stillwell W, Shaikh SR, Zerouga M, Siddiqui R, Wassall SR. Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod. Nutr. Dev. 45(5), 559–579 (2005).
  • Cole GM, Frautschy SA. DHA may prevent age-related dementia. J. Nutr. 140(4), 869–874 (2010).
  • Ma QL, Yang F, Rosario ER et al. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J. Neurosci. 29, 9078–9089 (2009).
  • Quinn JF, Raman R, Thomas RG et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA 304(17), 1903–1911 (2010).
  • Hashimoto M, Hossain S, Shimada T et al. Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J. Neurochem. 8(5), 1084–1091 (2002).
  • Björkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscl. Thromd. Vasc. Biol. 24, 806–815 (2004).
  • Dietschy JM, Turley SD. Cholesterol metabolism in central nervous system during early development and in the mature animal. J. Lipid Res. 45, 1375–1397 (2004).
  • Puglielli L, Konopka G, Pack-Chung E et al. Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat. Cell Biol. 3(10), 905–912 (2001).
  • Bhattacharyya R, Kovacs DM. ACAT inhibition and amyloid beta reduction. Biochim. Biophys. Acta 1801(8), 960–965 (2010).
  • Hutter-Paier B, Huttunen HJ, Puglielli L et al. The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer’s disease. Neuron 44(2), 227–238 (2004).
  • Björkhem I, Cedazo-Minguez A, Leoni V, Meaney S. Oxysterols and neurodegenerative diseases. Mol. Asp. Med. 30, 171–179 (2009).
  • Puglielli L, Tanzi RE, Kovacs DM. Alzheimer’s disease: the cholesterol connection. Nat. Neurosci. 6, 345–351 (2003).
  • Simons M, Keller P, Destrooper B, Beyreuther K, Dotti CG, Simons K. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc. Natl Acad. Sci. USA 95, 6460–6464 (1998).
  • Xiong H, Callaghan D, Jones A et al. Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and A-beta production. Neurobiol. Dis. 29, 422–437 (2008).
  • Crameri A, Biondi E, Kuehnle K et al. The role of seladin-1/DHCR24 in cholesterol biosynthesis, APP processing and A-beta generation in vivo. EMBO J. 25, 432–443 (2006).
  • Galloway S, Jian L, Johnsen R, Chew S, Mamo JCL. Beta-amyloid or its precursor protein is found in epithelial cells of the small intestine and is stimulated by high-fat feeding. J. Nutr. Biochem. 18, 279–284 (2007).
  • Fernández A, Llacuna L, Fernánez-Checa JC, Colell A. Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity. J. Neurosci. 29(20), 6394–6405 (2009).
  • Koldamova R, Staufenbiel M, Lefterov I. Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J. Biol. Chem. 280(52), 43224–43235 (2005).
  • Wahrle SE, Jiang H, Parsadanian M et al. Deletion of Abca1 increases Ab deposition in the PDAPP transgenic mouse model of Alzheimer disease. J. Biol. Chem. 280(52), 43236–43242 (2005).
  • Grösgen S, Grimm MO, Friess P, Hartmann T. Role of amyloid beta in lipid homeostasis. Biochim. Biophys. Acta 1801(8), 966–974 (2010).
  • Kivipelto M, Helkala EL, Hanninen T et al. Midlife vascular risk factors and late-life mild cognitive impairment: A populationbased study. Neurology 56(12), 1683–1689 (2001).
  • Wolf H, Grunwald M, Kruggel F et al. Hippocampal volume discriminates between normal cognition; questionable and mild dementia in the elderly. Neurobiol. Aging 22(2), 177–186 (2001).
  • Yaffe K, Barrett-Connor E, Lin F, Grady D. Serum lipoprotein levels, statin use, and cognitive function in older women. Arch. Neurol. 59(3), 378–384 (2002).
  • Kuo YM, Emmerling MR, Bisgaier CL et al. Elevated low-density lipoprotein in Alzheimer’s disease correlates with brain Abeta 1–42 levels. Biochem. Biophys. Res. Commun. 252(3), 711–715 (1998).
  • Shie FS, Jin LW, Cook DG, Leverenz JB, Leboeuf RC. Diet-induced hypercholesterolemia enhances brain A beta accumulation in transgenic mice. Neuroreport 13(4), 455–459 (2002).
  • Abad-Rodriguez J, Ledesma MD, Craessaerts K et al. Neuronal membrane cholesterol loss enhances amyloid peptide generation. J. Cell. Biol. 167(5), 953–960 (2004).
  • Mielke MM, Zandi PP, Shao H et al. The 32-year relationship between cholesterol and dementia from midlife to late life. Neurology 75(21), 1888–1895 (2010).
  • Reitz C. Dyslipidemia and dementia: current epidemiology, genetic evidence, and mechanisms behind the associations. J. Alzheimers Dis. doi:10.3233/JAD-2011-110599 (2011) (Epub ahead of print).
  • Reitz C, Luchsinger J, Tang MX, Manly J, Mayeux R. Impact of plasma lipids and time on memory performance in healthy elderly without dementia. Neurology 64(8), 1378–1383 (2005).
  • Reitz C, Tang MX, Luchsinger J, Mayeux R. Relation of plasma lipids to Alzheimer disease and vascular dementia. Arch. Neurol. 61(5), 705–714 (2004).
  • Reitz J, Gehrig-Burger K, Strauss JF, Gimpl G. Cholesterol interaction with the related steroidogenic acute regulatory lipid-transfer (START) domains of StAR (STARD1) and MLN64 (STARD3). FEBS J. 275(8), 1790–1802 (2008).
  • Mielke MM, Zandi PP, Sjogren M et al. High total cholesterol levels in late life associated with a reduced risk of dementia. Neurology 64(10), 1689–1695 (2005).
  • Shepardson NE, Shankar GM, Selkoe DJ. Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies. Arch. Neurol. 68(10), 1239–1244 (2011).
  • Refolo LM, Malester B, Lafrancois J et al. Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7(4), 321–331 (2000).
  • Sparks DL. Intraneuronal beta-amyloid immunoreactivity in the CNS. Neurobiol. Aging 17(2), 291–299 (1996).
  • Panza F, D’Introno A, Colacicco AM et al. Lipid metabolism in cognitive decline and dementia. Brain Res. Rev. 51(2), 275–292 (2006).
  • Bjorkhem I, Lutjohann D, Breuer O, Sakinis A, Wennmalm A. Importance of a novel oxidative mechanism for elimination of brain cholesterol. Turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with 18O2 techniques in vivo and in vitro. J. Biol. Chem. 272(48), 30178–30184 (1997).
  • Lutjohann D, Breuer O, Ahlborg G et al. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc. Natl Acad. Sci. USA 93(18), 9799–9804 (1996).
  • Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc. Natl Acad. Sci. USA 96(13), 7238–7243 (1999).
  • Bretillon L, Thuret G, Gregoire S et al. Lipid and fatty acid profile of the retina, retinal pigment epithelium/choroid, and the lacrimal gland, and associations with adipose tissue fatty acids in human subjects. Exp. Eye Res. 87(6), 521–528 (2008).
  • Babiker A, Andersson O, Lund E et al. Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport. J. Biol. Chem. 272(42), 26253–26261 (1997).
  • Meaney S, Heverin M, Panzenboeck U et al. Novel route for elimination of brain oxysterols across the blood–brain barrier: conversion into 7alpha-hydroxy-3-oxo-4-cholestenoic acid. J. Lipid. Res. 48(4), 944–951 (2007).
  • Famer D, Meaney S, Mousavi M, Nordberg A, Bjorkhem I, Crisby M. Regulation of alpha- and beta-secretase activity by oxysterols: cerebrosterol stimulates processing of APP via the alpha-secretase pathway. Biochem. Biophys. Res. Commun. 359(1), 46–50 (2007).
  • Leoni V, Masterman T, Mousavi FS et al. Diagnostic use of cerebral and extracerebral oxysterols. Clin. Chem. Lab. Med. 42(2), 186–191 (2004).
  • Papassotiropoulos A, Lutjohann D, Bagli M et al. 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J. Psychiatr. Res. 36(1), 27–32 (2002).
  • Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease. Lancet Neurol. 2(10), 605–613 (2003).
  • Leoni V, Shafaati M, Salomon A, Kivipelto M, Bjorkhem I, Wahlund LO. Are the CSF levels of 24S-hydroxycholesterol a sensitive biomarker for mild cognitive impairment? Neurosci. Lett. 397(1–2), 83–87 (2006).
  • Yau JL, Rasmuson S, Andrew R et al. Dehydroepiandrosterone 7-hydroxylase CYP7B: predominant expression in primate hippocampus and reduced expression in Alzheimer’s disease. Neuroscience 121(2), 307–314 (2003).
  • Mateos L, Akterin S, Gil-Bea FJ et al. Activity-regulated cytoskeleton-associated protein in rodent brain is down-regulated by high fat diet in vivo and by 27-hydroxycholesterol in vitro. Brain Pathol. 19(1), 69–80 (2009).
  • Janowski BA, Grogan MJ, Jones SA et al. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc. Natl Acad. Sci. USA 96(1), 266–271 (1999).
  • Cao G, Bales KR, Demattos RB, Paul SM. Liver X receptor-mediated gene regulation and cholesterol homeostasis in brain: relevance to Alzheimer’s disease therapeutics. Curr. Alzheimer Res. 4(2), 179–184 (2007).
  • Vanmierlo T, Rutten K, Dederen J et al. Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol. Aging 32(7), 1262–1272 (2011).
  • Qing H, He G, Ly PT et al. Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J. Exp. Med. 205(12), 2781–2789 (2008).
  • Hudry E, Van Dam D, Kulik W et al. Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s disease. Mol. Ther. 18(1), 44–53 (2010).
  • Bryleva EY, Rogers MA, Chang CCY et al. ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. Proc. Natl Acad. Sci. USA 107(7), 3081–3086 (2010).
  • Heverin M, Bogdanovic N, Lutjohann D et al. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J. Lipid Res. 45(1), 186–193 (2004).
  • Shafaati M, Marutle A, Pettersson H et al. Marked accumulation of 27-hydroxycholesterol in the brains of Alzheimer’s patients with the Swedish APP 670/671 mutation. J. Lipid Res. 52(5), 1004–1010 (2011).
  • Dasari B, Prasanthi JRP, Marwarha G, Singh BB, Ghribi O. The oxysterol 27-hydroxycholesterol increases beta-amyloid and oxidative stress in retinal pigment epithelial cells. BMC Ophthalmology 10, 22 (2010).
  • Vetrivel KS, Thinakaran G. Membrane rafts in Alzheimer’s disease beta-amyloid production. Biochim. Biophys. Acta 1801(8), 860–867 (2010).
  • Thelen KM, Laaksonen R, Paiva H, Lehtimaki T, Lutjohann D. High-dose statin treatment does not alter plasma marker for brain cholesterol metabolism in patients with moderately elevated plasma cholesterol levels. J. Clin. Pharmacol. 46(7), 812–816 (2006).
  • Tsuji A. P-glycoprotein-mediated efflux transport of anticancer drugs at the blood–brain barrier. Ther. Drug Monit. 20(5), 588–590 (1998).
  • Fassbender K, Simons M, Bergmann C et al. Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta42 and Abeta40 in vitro and in vivo. Proc. Natl Acad. Sci. USA 98(10), 5856–5861 (2001).
  • Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA. Statins and the risk of dementia. Lancet 356(9242), 1627–1631 (2000).
  • Lütjohann D, Von Bergmann K. 24S-hydroxycholesterol: a marker of brain cholesterol metabolism. Pharmacopsychiatry 36, S102–S106 (2003).
  • Refolo LM, Pappolla MA, Lafrancois J et al. A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis. 8(5), 890–899 (2001).
  • Buxbaum JD, Geoghagen NS, Friedhoff LT. Cholesterol depletion with physiological concentrations of a statin decreases the formation of the Alzheimer amyloid Abeta peptide. J. Alzheimers Dis. 3(2), 221–229 (2001).
  • Tamboli IY, Barth E, Christian L et al. Statins promote the degradation of extracellular amyloid beta-peptide by microglia via stimulation of exosome-associated insulindegrading enzyme (IDE) secretion. J. Biol. Chem. 285(48), 37405–37414 (2010). Describes interesting data regarding statin use for the promotion of amyloid-b degradation.
  • McGuinness B, Passmore P. Can statins prevent or help treat Alzheimer’s disease? J. Alzheimers Dis. 20(3), 925–933 (2010).
  • Sturgeon JD, Folsom AR, Longstreth WTJ, Shahar E, Rosamond WD, Cushman M. Hemostatic and inflammatory risk factors for intracerebral hemorrhage in a pooled cohort. Stroke 39(8), 2268–2273 (2008).
  • Michikawa M, Yanagisawa K. Apolipoprotein E4 induces neuronal cell death under conditions of suppressed de novo cholesterol synthesis. J. Neurosci. Res. 54(1), 58–67 (1998).
  • Meske V, Albert F, Richter D, Schwarze J, Ohm TG. Blockade of HMG-CoA reductase activity causes changes in microtubulestabilizing protein tau via suppression of geranylgeranylpyrophosphate formation: implications for Alzheimer’s disease. Eur. J. Neurosci. 17(1), 93–102 (2003).
  • Treiber-Held S, Distl R, Meske V, Albert F, Ohm TG. Spatial and temporal distribution of intracellular free cholesterol in brains of a Niemann–Pick type C mouse model showing hyperphosphorylated tau protein. Implications for Alzheimer’s disease. J. Pathol. 200(1), 95–103 (2003).
  • Kandiah N, Feldman HH. Therapeutic potential of statins in Alzheimer’s disease. J. Neurol. Sci. 283(1–2), 230–234 (2009).
  • Shepardson NE, Shankar GM, Selkoe DJ. Cholesterol level and statin use in Alzheimer disease: II. Review of human trials and recommendations. Arch. Neurol. 68(11), 1385–1392 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.