425
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Unraveling the role of nicotinamide phosphoribosyltransferase on lipids in atherosclerosis

, , , , , , & show all
Pages 697-707 | Published online: 18 Jan 2017

References

  • Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B cell colony-enhancing factor. Mol. Cell. Biol. 14(2), 1431–1437 (1994). ▪▪ Describes the cloning of nicotinamide phosphoribosyltransferase (NAMPT).
  • Rongvaux A, Shea RJ, Mulks MH et al. Pre‑B cell colony‑enhancing factor, whose expression is up‑regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur. J. Immunol. 32(11), 3225–3234 (2002). ▪▪ Describes the enzymatic activity of NAMPT.
  • Kim MK, Lee JH, Kim H et al. Crystal structure of visfatin/pre‑B cell colonyenhancing factor 1/nicotinamide phosphoribosyltransferase, free and in complex with the anti‑cancer agent FK‑866. J. Mol. Biol. 362(1), 66–77 (2006).
  • Fukuhara A, Matsuda M, Nishizawa M et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307(5708), 426–430 (2005).
  • Fukuhara A, Matsuda M, Nishizawa M et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307(5708), 426–430; Retraction in: Fukuhara A, Matsuda M, Nishizawa M et al.Science 318(5850), 563 (2007).
  • Moschen AR, Gerner RR, Tilg H. Pre‑B cell colony enhancing factor/NAMPT/visfatin in inflammation and obesity‑related disorders. Curr. Pharm. Des. 16(17), 1913–1920 (2010). ▪ An excellent review of NAMPT and obesity‑related diseases.
  • Dahl TB, Holm S, Aukrust P, Halvorsen B. Visfatin/NAMPT: a multifaceted molecule with diverse roles in physiology and pathophysiology. Annu. Rev. Nutr. 32, 229–243 (2012).
  • Curat CA, Wegner V, Sengenes C et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 49(4), 744–747 (2006).
  • Krzysik‑Walker SM, Ocon‑Grove OM, Maddineni SR, Hendricks GL 3rd, Ramachandran R. Is visfatin an adipokine or myokine? Evidence for greater visfatin expression in skeletal muscle than visceral fat in chickens. Endocrinology 149(4), 1543–1550 (2008).
  • Garten A, Petzold S, Barnikol‑Oettler A et al. Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin) is constitutively released from human hepatocytes. Biochem. Biophys. Res. Commun. 391(1), 376–381 (2010).
  • Dahl TB, Yndestad A, Skjelland M et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation 115(8), 972–980 (2007).
  • Kawasaki E, Hokari F, Sasaki M, Sakai A, Koshinaka K, Kawanaka K. Role of local muscle contractile activity in the exerciseinduced increase in NR4A receptor mRNA expression. J. Appl. Physiol. 106(6), 1826–1831 (2009).
  • McGlothlin JR, Gao L, Lavoie T et al. Molecular cloning and characterization of canine pre‑B cell colony‑enhancing factor. Biochem. Genet. 43(3–4), 127–141 (2005).
  • Benito N, Moreno A, Filella X et al. Inflammatory responses in blood samples of human immunodeficiency virus‑infected patients with pulmonary infections. Clin. Diagn. Lab. Immunol. 11(3), 608–614 (2004).
  • Hausenloy DJ. Drug discovery possibilities from visfatin cardioprotection? Curr. Opin Pharmacol. 9(2), 202–207 (2009).
  • Bi J, Li H, Ye SQ, Ding S. Pre‑B cell colony‑enhancing factor exerts a neuronal protection through its enzymatic activity and the reduction of mitochondrial dysfunction in in vitro ischemic models. J. Neurochem. 120(2), 334–346 (2012).
  • Zhai RG, Rizzi M, Garavaglia S. Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme. Cell. Mol. Life Sci. 66(17), 2805–2818 (2009).
  • Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem. Sci. 32(1), 12–19 (2007).
  • Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD‑dependent histone deacetylase. Nature 403(6771), 795–800 (2000).
  • D’Amours D, Desnoyers S, D’Silva I, Poirier GG. Poly(ADP‑ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342 (Pt 2), 249–268 (1999).
  • Kim MY, Zhang T, Kraus WL. Poly(ADPribosyl)ation by PARP‑1: ‘PAR‑laying’ NAD+ into a nuclear signal. Genes Dev. 19(17), 1951–1967 (2005).
  • Griendling KK, Sorescu D, Ushio‑Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ. Res. 86(5), 494–501 (2000).
  • Moschen AR, Kaser A, Enrich B et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. 178(3), 1748–1758 (2007).
  • Burgos ES, Schramm VL. Weak coupling of ATP hydrolysis to the chemical equilibrium of human nicotinamide phosphoribosyltransferase. Biochemistry 47(42), 11086–11096 (2008).
  • Hara N, Yamada K, Shibata T, Osago H, Tsuchiya M. Nicotinamide phosphoribosyltransferase/visfatin does not catalyze nicotinamide mononucleotide formation in blood plasma. PLoS ONE 6(8), e22781 (2011).
  • Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. J. Pathol. 214(2), 161–178 (2008).
  • Forman D, Bulwer BE. Cardiovascular disease: optimal approaches to risk factor modification of diet and lifestyle. Curr. Treat. Opt. Cardiovasc. Med. 8(1), 47–57 (2006).
  • Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352(16), 1685–1695 (2005).
  • Kutuk O, Basaga H. Inflammation meets oxidation: NF‑kappaB as a mediator of initial lesion development in atherosclerosis. Trends Mol. Med. 9(12), 549–557 (2003).
  • Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell 104(4), 503–516 (2001).
  • Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104(3), 365–372 (2001).
  • Libby P. Inflammation in atherosclerosis. Nature 420(6917), 868–874 (2002).
  • Duewell P, Kono H, Rayner KJ et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293), 1357–1361 (2010).
  • Lo JC, Wang Y, Tumanov AV et al. Lymphotoxin beta receptor‑dependent control of lipid homeostasis. Science 316(5822), 285–288 (2007).
  • Morin CL, Schlaepfer IR, Eckel RH. Tumor necrosis factor‑alpha eliminates binding of NF‑Y and an octamer‑binding protein to the lipoprotein lipase promoter in 3T3‑L1 adipocytes. J. Clin. Invest. 95(4), 1684–1689 (1995).
  • Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 473(7347), 317–325 (2011).
  • Kadoglou NP, Sailer N, Moumtzouoglou A et al. Visfatin (NAMPT) and ghrelin as novel markers of carotid atherosclerosis in patients with Type 2 diabetes. Exp. Clin. Endocrinol. Diabetes 118(2), 75–80 (2010).
  • Liu SW, Qiao SB, Yuan JS, Liu DQ. Association of plasma visfatin levels with inflammation, atherosclerosis and acute coronary syndromes (ACS) in humans. Clin. Endocrinol. (Oxf.) 71(2), 202–207 (2009).
  • Axelsson J, Witasp A, Carrero JJ et al. Circulating levels of visfatin/pre‑B cell colony‑enhancing factor 1 in relation to genotype, GFR, body composition, and survival in patients with CKD. Am. J. Kidney Dis. 49(2), 237–244 (2007).
  • Lu LF, Yang SS, Wang CP et al. Elevated visfatin/pre‑B cell colony‑enhancing factor plasma concentration in ischemic stroke. J. Stroke Cerebrovasc. Dis. 18(5), 354–359 (2009).
  • Aust G, Uptaite‑Patapoviene M, Scholz M, Richter O, Rohm S, Bluher M. Circulating Nampt and RBP4 levels in patients with carotid stenosis undergoing carotid endarterectomy (CEA). Clin. Chim. Acta 412(13–14), 1195–1200 (2011).
  • Korner A, Garten A, Bluher M, Tauscher R, Kratzsch J, Kiess W. Molecular characteristics of serum visfatin and differential detection by immunoassays. J. Clin. Endocrinol. Metab. 92(12), 4783–4791 (2007).
  • Dahl T, Ranheim T, Holm S, Berge R, Aukrust P, Halvorsen B. Nicotinamide phosphoribosyltransferase and lipid accumulation in macrophages. Eur. J. Clin. Invest. 41(10), 1098–1104 (2011).
  • Tanny JC, Dowd GJ, Huang J, Hilz H, Moazed D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99(7), 735–745 (1999).
  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC‑1alpha and SIRT1. Nature 434(7029), 113–118 (2005). ▪▪ Describes the role of PGC1α and SIRT1 in glucose homeostasis.
  • Ozasa H, Ayaori M, Iizuka M et al. Pioglitazone enhances cholesterol efflux from macrophages by increasing ABCA1/ABCG1 expressions via PPARgamma/LXRalpha pathway: findings from in vitro and ex vivo studies. Atherosclerosis 219(1), 141–150 (2011).
  • Stein S, Lohmann C, Schafer N et al. SIRT1 decreases Lox‑1‑mediated foam cell formation in atherogenesis. Eur. Heart J. 31(18), 2301–2309 (2010).
  • Liu TF, Vachharajani VT, Yoza BK, McCall CE. NAD+‑dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J. Biol Chem. 287(31), 25758–25769 (2012).
  • Olarescu NC, Ueland T, Lekva T et al. Adipocytes as a source of increased circulating levels of nicotinamide phosphoribosyltransferase/visfatin in active acromegaly. J. Clin. Endocrinol. Metab. 97(4), 1355–1362 (2012).
  • Lorente‑Cebrian S, Bustos M, Marti A, Martinez JA, Moreno‑Aliaga MJ. Eicosapentaenoic acid stimulates AMPactivated protein kinase and increases visfatin secretion in cultured murine adipocytes. Clin. Sci. (Lond.) 117(6), 243–249 (2009).
  • Yang CC, Deng SJ, Hsu CC et al. Visfatin regulates genes related to lipid metabolism in porcine adipocytes. J. Anim. Sci. 88(10), 3233–3241 (2010).
  • Caton PW, Kieswich J, Yaqoob MM, Holness MJ, Sugden MC. Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically‑obese db/db mice. Diabetes Obes. Metab. 13(12), 1097–1104 (2011).
  • Imai S. “Clocks” in the NAD world: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim. Biophys. Acta 1804(8), 1584–1590 (2010).
  • Picard F, Kurtev M, Chung N et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR‑gamma. Nature 429(6993), 771–776 (2004).
  • Rutanen J, Yaluri N, Modi S et al. SIRT1 mRNA expression may be associated with energy expenditure and insulin sensitivity. Diabetes 59(4), 829–835 (2010).
  • Bowlby SC, Thomas MJ, D’Agostino RB Jr, Kridel SJ. Nicotinamide phosphoribosyl transferase (Nampt) is required for de novo lipogenesis in tumor cells. PLoS ONE 7(6), e40195 (2012).
  • Musso G, Gambino R, Cassader M. Recent insights into hepatic lipid metabolism in non‑alcoholic fatty liver disease (NAFLD). Prog. Lipid Res. 48(1), 1–26 (2009).
  • Dahl TB, Haukeland JW, Yndestad A et al. Intracellular nicotinamide phosphoribosyltransferase protects against hepatocyte apoptosis and is down‑regulated in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 95(6), 3039–3047 (2010).
  • Sun B, Yang G, Yang M, Liu H, Boden G, Li L. Long‑term high‑fat diet links the regulation of the insulin‑sensitizing fibroblast growth factor‑21 and visfatin. Cytokine 59(1), 131–137 (2012).
  • Zhang K, Li L, Qi Y et al. Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology 153(2), 631–646 (2012).
  • Tao R, Wei D, Gao H, Liu Y, DePinho RA, Dong XC. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J. Biol Chem. 286(16), 14681–14690 (2011).
  • Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 28(1), 91–106 (2007).
  • Pfutzner A, Hanefeld M, Lubben G et al. Visfatin: a putative biomarker for metabolic syndrome is not influenced by pioglitazone or simvastatin treatment in nondiabetic patients at cardiovascular risk – results from the PIOSTAT study. Horm. Metab. Res. 39(10), 764–768 (2007).
  • Derdemezis C, Filippatos T, Tselepis A, Mikhailidis D, Elisaf M. Effects of ezetimibe, either alone or in combination with atorvastatin, on serum visfatin levels: a pilot study. Expert Opin Pharmacother. 9(11), 1829–1837 (2008).
  • Kostapanos MS, Derdemezis CS, Filippatos TD et al. Effect of rosuvastatin treatment on plasma visfatin levels in patients with primary hyperlipidemia. Eur. J. Pharmacol. 578(2–3), 249–252 (2008).
  • Kadoglou NP, Tsanikidis H, Kapelouzou A et al. Effects of rosiglitazone and metformin treatment on apelin, visfatin, and ghrelin levels in patients with Type 2 diabetes mellitus. Metabolism 59(3), 373–379 (2010).
  • Aigner E, Bachofner N, Klein K et al. Retinol‑binding protein 4 in polycystic ovary syndrome – association with steroid hormones and response to pioglitazone treatment. J. Clin. Endocrinol. Metab. 94(4), 1229–1235 (2009).
  • Hammarstedt A, Pihlajamaki J, Rotter SV et al. Visfatin is an adipokine, but it is not regulated by thiazolidinediones. J. Clin. Endocrinol. Metab. 91(3), 1181–1184 (2006).
  • Pfutzner A, Marx N, Walcher D, Lobig M, Seidel D, Forst T. Impact of rosiglitazone on visfatin and adiponectin plasma concentrations in patients with Type 2 diabetes and coronary artery disease. Clin. Lab. 54(7–8), 237–241 (2008).
  • Erdem G, Dogru T, Tasci I et al. The effects of pioglitazone and metformin on plasma visfatin levels in patients with treatment naive Type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 82(2), 214–218 (2008).
  • McGee KC, Harte AL, da Silva NF et al. Visfatin is regulated by rosiglitazone in Type 2 diabetes mellitus and influenced by NFκB and JNK in human abdominal subcutaneous adipocytes. PLoS ONE 6(6), e20287 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.