380
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Magnesium-doped Zinc Oxide Nanoparticles Alter Biofilm Formation of Proteus Mirabilis

, , , , &
Pages 1551-1564 | Received 01 Nov 2018, Accepted 25 Mar 2019, Published online: 05 Jun 2019

References

  • Costerton JW , StewartPS , GreenbergEP. Bacterial biofilms: a common cause of persistent infections. Science284(5418), 1318–1322 (1999).
  • Wingender J , StrathmannM , RodeA , LeisA , FlemmingHC. Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods Enzymol.336, 302–314 (2001).
  • Flemming HC , WingenderJ. The biofilm matrix. Nat. Rev. Microbiol.8(9), 623–633 (2010).
  • Tenke P , KovacsB , JackelM , NagyE. The role of biofilm infection in urology. World J. Urol.24(1), 13–20 (2006).
  • Van Kleef E , RobothamJV , JitM , DeenySR , EdmundsWJ. Modelling the transmission of healthcare associated infections: a systematic review. BMC Infect. Dis.13, 294 (2013).
  • Ecker DJ , SampathR , WillettPet al. The Microbial Rosetta Stone Database: a compilation of global and emerging infectious microorganisms and bioterrorist threat agents. BMC Microbiol.5, 19 (2005).
  • Jacobsen SÁ , SticklerDJ , MobleyHLT , ShirtliffME. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev.21, 26–59 (2008).
  • Stickler DJ . Bacterial biofilms in patients with indwelling urinary catheters. Nat. Clin. Pract. Urol.5(11), 598–608 (2008).
  • Stickler DJ , ZimakoffJ. Complications of urinary tract infections associated with devices used for long-term bladder management. J. Hosp. Infect.28(3), 177–194 (1994).
  • Tambyah PA . Catheter-associated urinary tract infections: diagnosis and prophylaxis. Int. J. Antimicrob. Agents24 (1), 44–48 (2004).
  • O'Hara CM , BrennerFW , MillerJM. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev.13(4), 534–546 (2000).
  • Griffith DP , MusherDM , ItinC. Urease. The primary cause of infection-induced urinary stones. Invest. Urol.13(5), 346–350 (1976).
  • Foxman B , BrownP. Epidemiology of urinary tract infections: transmission and risk factors, incidence, and costs. Infect. Dis. Clin. North Am.17(2), 227–241 (2003).
  • Kim BN , KimNJ , KimMN , KimYS , WooJH , RyuJ. Bacteraemia due to tribe Proteeae: a review of 132 cases during a decade (1991–2000). Scand. J. Infect.35, 98–103 (2003).
  • Sabbuba NA , SticklerDJ , MahenthiralingamE , PainterDJ , ParkinJ , FeneleyRCL. Genotyping demonstrates that the strains of Proteus mirabilis from bladder stones and catheter encrustations of patients undergoing long-term bladder catheterization are identical. J. Urol.17, 1925–1928 (2004).
  • Francolini I , DonelliG. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol. Med. Microbiol.59(3), 227–38 (2010).
  • Guiton PS , CusumanoCK , KlineKAet al. Combinatorial small-molecule therapy prevents uropathogenic Escherichia coli catheter-associated urinary tract infections in mice. Antimicrob. Agents Chemother.56(9), 4738–4745 (2012).
  • Savolainen K , PylkkänenL , NorppaHet al. Nanotechnologies, engineered nanomaterials and occupational health and safety: a review. Saf. Sci.48(8), 957–963 (2010).
  • Buzea C , PachecoII , RobbieK. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases2(4), 17–71 (2007).
  • Vardanyan Z , GevorkyanV , AnanyanM , VardapetyanH , TrchounianA. Effects of various heavy metal nanoparticles on Enterococcus hirae and Escherichia coli growth and proton-coupled membrane transport. J. Nanobiotechnol.13(1), 69 (2015).
  • Xie Y , HeY , IrwinPL , JinT , ShiX. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol.77(7), 2325–2331 (2011).
  • Shi SF , JiaJF , GuoXKet al. Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles. Int. J. Nanomed.11, 6499–6506 (2016).
  • Kolodziejczak-Radzimska A , JesionowskiT. Zinc oxide-from synthesis to application: a review. Materials7(4), 2833–2881 (2014).
  • Gunalan S , SivarajR , RajendranV. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci. Mater. Int.22(6), 693–700 (2012).
  • Rajivgandhi G , MaruthupandyM , MuneeswaranT , AnandM , ManoharanN. Antibiofilm activity of zinc oxide nanosheets (ZnO NSs) using Nocardiopsis sp. GRG1 (KT235640) against MDR strains of gram negative Proteus mirabilis and Escherichia coli. Process Biochem.67, 8–18 (2018).
  • Liu Y , HeL , MustaphaA , LiH , HuZQ , LinM. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol.107(4), 1193–1201 (2009).
  • Lee JH , KimYG , ChoMH , LeeJ. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol. Res.169(12), 888–896 (2014).
  • Reddy LS , NishaMM , JoiceM , ShilpaPN. Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm. Biol.52(11), 1388–1397 (2014).
  • Santhoshkumar J , KumarSV , RajeshkumarS. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour. Efficient Technol.3(4), 459–465 (2017).
  • Sinha R , KaranR , SinhaA , KhareSK. Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour. Technol.102(2), 1516–1520 (2011).
  • Hayat S , MuzammilS , RasoolMHet al. In vitro antibiofilm and anti-adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria. Microbiol. Immunol.62(4), 211–220 (2018).
  • Pradeev raj K , SadaiyandiK , KennedyAet al. Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett.13(1), 229 (2018).
  • Hydrophilic Matrix Tablets for Oral Controlled Release (Vol. 55). TimminsP, PygallSR, MeliaCD ( Eds). Springer New York, NY, USA (2014).
  • Alderman DA . A review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms.Int. J. Pharm. Tech. Prod. Mfr.5(3), 1–9 (1984).
  • Kaur S , HarjaiK , ChhibberS. In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS ONE11(6), e0157626 (2016).
  • Rao LB , MadhukumarR , AshaS , ShettyRG , NaikP , SangappaY. Mechanical and antibacterial properties of ZnO nanoparticles incorporated HPMC polymer nanocomposite films. Res. J. Pharm. Biol. Chem. Sci.6(3), 767–771. (2015).
  • Zunino P , GeymonatL , AllenAG , Legnani-FajardoC , MaskellDJ. Virulence of a Proteus mirabilis ATF isogenic mutant is not impaired in a mouse model of ascending urinary tract infection. FEMS Immunol. Med. Microbiol.29(2), 137–143 (2000).
  • Bang J , YangH , HollowayPH. Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg. Nanotechnology17(4), 973–938 (2006).
  • Cai X , LuoY , ZhangW , DuD , LinY. pH-sensitive ZnO quantum dots–doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl. Mater. Interfaces8(34), 22442–22450 (2016).
  • Muhammad F , GuoM , QiWet al. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracellular dissolution of ZnO nanolids. J. Am. Chem. Soc.133(23), 8778–8781 (2011).
  • Schlapp G , ScavoneP , ZuninoP , HartelS. Development of 3D architecture of uropathogenic Proteus mirabilis batch culture biofilms – a quantitative confocal microscopy approach. J. Microbiol. Methods87(2), 234–240 (2011).
  • Hartel S , FananiML , MaggioB. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers. Biophys. J.88(1), 287–304 (2005).
  • Stetefeld J , McKennaSA , PatelTR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev.8(4), 409–427 (2016).
  • Morales JO , SuR , McConvilleJT. The influence of recrystallized caffeine on water-swellable polymethacrylate mucoadhesive buccal films. AAPS PharmSciTech14(2), 475–484 (2013).
  • Morales JO , HuangS , Williams III, RO , McConvilleJT. Films loaded with insulin-coated nanoparticles (ICNP) as potential platforms for peptide buccal delivery. Colloids Surf. B Biointerfaces12238–45 (2014).
  • Morales JO , RossAC , McConvilleJT. Protein-coated nanoparticles embedded in films as delivery platforms. J. Pharm. Pharmacogn.65(6), 827–838 (2013).
  • Alias SS , IsmailAB , MohamadAA. Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J. Alloys Compd.499, 231–237 (2010).
  • Kumar R , GokulakrishnanN , KumarRet al. Can be a bimetal oxide ZnO–MgO nanoparticles anticancer drug carrier and deliver? Doxorubicin adsorption/release study. J. Nanosci. Nanotechnol.15(2), 1543–1553 (2015).
  • Kuznetsov AS , LuYG , TurnerSet al. VV. Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters. Opt. Mater. Express2(6), 723–734 (2012).
  • Sullivan NL , SepterAN , FieldsAT , WenrenLM , GibbsKA. The complete genome sequence of Proteus mirabilis strain BB2000 reveals differences from the P. mirabilis reference strain. Genome Announc.1(5), pii:e00024-13 (2013).
  • Armbruster CE , PrenovostK , MobleyHL , ModyL. How often do clinically diagnosed catheter‐associated urinary tract infections in nursing homes meet standardized criteria?J. Am. Geriatr. Soc.65(2), 395–401 (2017).
  • Saint S , ChenowethCE. Biofilms and catheter-associated urinary tract infections. Infect. Dis. Clin. North. Am.17(2), 411–432 (2003).
  • Li X , LuN , BradyHR , PackmanAI. Ureolytic biomineralization reduces Proteus mirabilis biofilm susceptibility to ciprofloxacin. Antimicrob. Agents Chemother.60(5), 2993–3000 (2016).
  • Hooton TM , BradleySF , CardenasDDet al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis.50(5), 625–663 (2010).
  • Harrison JJ , TurnerRJ , CeriH. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ. Microbiol.7(7), 981–994 (2005).
  • Padmavathy N , VijayaraghavanR. Enhanced bioactivity of ZnO nanoparticles – an antimicrobial study. Sci. Technol. Adv. Mater.9(3), 035004 (2008).
  • Pereira AL , SilvaTN , GomesAC , AraújoAC , GiuglianoLG. Diarrhea-associated biofilm formed by enteroaggregative Escherichia coli and aggregative Citrobacter freundii: a consortium mediated by putative F pili. BMC Microbiol.10(1), 57 (2010).
  • Cheow WS , ChangMW , HadinotoK. Antibacterial efficacy of inhalable antibiotic-encapsulated biodegradable polymeric nanoparticles against E. coli biofilm cells. J. Biomed. Nanotechnol.6(4), 391–403 (2010).
  • de Moura MR , MattosoLHC , ZucolottoV. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging, J. Food Eng.109(3), 520–524 (2012).
  • Ebrahimiasl S , RajabpourA. Synthesis and characterization of novel bactericidal Cu/HPMC BNCs using chemical reduction method for food packaging. J. Food Sci. Technol.52(9), 5982–5988 (2014).
  • Rao LB , RaoCK. Buckling of circular plate with foundation and elastic edge. Int. J. Mech. Mater. Design.11(2), 149–156 (2015).
  • Applerot G , LelloucheJ , PerkasN , NitzanY , GedankenA , BaninE. ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv.2(6), 2314–2321 (2012).
  • Sherrard LJ , TunneyMM , ElbornJS. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. Lancet384(9944), 703–713 (2014).
  • Hsueh YH , KeWJ , HsiehCT , LinKS , TzouDY , ChiangCL. ZnO nanoparticles affect Bacillus subtilis cell growth and biofilm formation. PLoS ONE10(6), e0128457 (2015).
  • Bhattacharyya P , AgarwalB , GoswamiM , MaitiD , BaruahS , TribediP. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae. Antonie Van Leeuwenhoek111(1), 89–99 (2018).
  • Irzh A , GenishI , KleinL , SolovyovLA , GedankenA. Synthesis of ZnO and Zn nanoparticles in microwave plasma and their deposition on glass slides. Langmuir26(8), 5976–5984 (2010).
  • Brayner R , Ferrari-IliouR , BrivoisN , DjediatS , BenedettiMF , FievetF. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett.6(4), 866–870 (2006).
  • Jones N , RayB , RanjitKT , MannaAC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett.279(1), 71–76 (2008).
  • Sawai J . Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods54(2), 177–182 (2003).
  • AbdElhady MM . Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int. J. Carbohydrate Chem.2012(12), 1–6 (2012).
  • Ishida ST . Bacteriolyses of bacterial cell walls by Cu (II) and Zn (II) ions based on antibacterial results of dilution medium method and halo antibacterial test. J. Adv. Res. Biotech.2, 1–12 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.