35
Views
0
CrossRef citations to date
0
Altmetric
Short Note

DNA barcoding of five economically important freshwater fish species from the Nile River, Sudan

ORCID Icon &
Pages 338-343 | Received 26 Jan 2023, Accepted 09 Jul 2023, Published online: 11 Aug 2023

References

  • Abu Gideiri YB. 1984. Fishes of the Sudan. Khartoum, Sudan: Khartoum University Press.
  • Adams M, Raadik TA, Burridge CP, Georges A. 2014. Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room? Systematic Biology 63: 518–533. https://doi.org/10.1093/sysbio/syu017
  • Ali FS, Ismail M, Mamoon A. 2019. Comparative molecular identification of genus Dicentrarchus using mitochondrial genes and internal transcribed spacer region. Egyptian Journal of Aquatic Biology Fisheries 23: 371–384. https://doi.org/10.21608/ejabf.2019.47385
  • Ali FS, Ismail M, Aly W. 2020. DNA barcoding to characterize biodiversity of freshwater fishes of Egypt. Molecular Biology Reports 47: 5865–5877. https://doi.org/10.1007/s11033-020-05657-3
  • Anton P, Curtis L. 2017. Livelihoods of small-scale fishers along the Nile River in Sudan. Cairo, Egypt: Food and Agriculture Organization of the United Nations Regional Office for Near East and North Africa.
  • Bailey RG. 1994. A guide to the fishes of the River Nile in the Republic of Sudan. Journal of Natural History 28: 937–970. https://doi.org/10.1080/00222939400770501
  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K et al. 2006. Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22: 148–155. https://doi.org/10.1016/j.tree.2006.11.004
  • Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V. 1987. Ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. The American Journal of Tropical Medicine and Hygiene 36: 37–41. https://doi.org/10.4269/ajtmh.1987.37.37
  • Dudu A, Barbălată T, Popa G, Georgescu S, Costache M. 2016. Advantages and limitations of DNA barcoding in identifying commercially-exploited fish species. Animal Science and Biotechnologies 49: 45–49.
  • Falade MO, Opene AJ, Otarigho B. 2016. DNA barcoding of Clarias gariepinus, Coptodon zillii and Sarotherodon melanotheron from southwestern Nigeria. F1000Research 5: article 1268. https://doi.org/10.12688/f1000research.7895.1
  • FAO (Food and Agriculture Organization of the United Nations). 2008. Fishery country profile: The Republic of the Sudan. FID/CP/SUD. February 2008.
  • Frankham R. 2005. Genetics and extinction. Biological Conservation 126: 131–140. https://doi.org/10.1016/j.biocon.2005.05.002
  • Froese R, Pauly D (eds). 2006. “Labeo vulgaris“ in FishBase. April 2006 version.
  • Han C, Li Q, Xu J, Li X, Huang J. 2015. Characterization of Clarias gariepinus mitochondrial genome sequence and a comparative analysis with other catfishes. Biologia 70: 1245–1253. https://doi.org/10.1515/biolog-2015-0145
  • Hebert PDN, Ratnasingham S, deWaard JR. 2003a. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B, Biological Sciences 270(Suppl.): S96–S99.
  • Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003b. Biological identification through DNA barcodes. Proceedings of the Royal Society of London. Series B, Biological Science 270: 313–321. https://doi.org/10.1098/rspb.2002.2218
  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101: 14812–14817. https://doi.org/10.1073/pnas.0406166101
  • Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN. 2007. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes 7: 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x
  • Iyiola OA, Nneji LM, Mustapha MK, Nzeh CG, Oladipo SO, Nneji IC et al. 2018. DNA barcoding of economically important freshwater fish species from north-central Nigeria uncovers cryptic diversity. Ecology and Evolution 8: 6932–6951. https://doi.org/10.1002/ece3.4210
  • Karim A, Iqbal A, Akhtar R, Rizwan M, Amar A, Qamar U, Jahan S. 2015. Barcoding of freshwater fishes from Pakistan. Mitochondrial DNA 27: 2685–2688. doi: 10.3109/19401736.2015.1043544
  • Karim A, Saif R, Gill Z, Salamat AF, Fatima R, Razzaq A. 2018. CO1 gene-based identification and phylogenetic analysis of two freshwater fish species Labeo gonius and Cirrhinus mrigala (family Cyprinidae) from River Ravi, Punjab, Pakistan. Journal of Agricultural Science and Soil Sciences 6: 24–31.
  • Kent RJ. 2009. Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Molecular Ecology Resources 9: 4–18. https://doi.org/10.1111/j.1755-0998.2008.02469.x
  • Keskİn E, Atar HH. 2013. DNA barcoding commercially important fish species of Turkey. Molecular Ecology Resources 13: 788–797. https://doi.org/10.1111/1755-0998.12120
  • Lavoué S, Miya M, Arnegard ME, Sullivan JP, Hopkins CD, Nishida M. 2012. Comparable ages for the independent origins of electrogenesis in African and South American weakly electric fishes. PLoS ONE 7: e36287. https://doi.org/10.1371/journal.pone.0036287
  • Mahmoud ZN, Hamid MM, Hagar E. 2020. Freshwater fishes from around Kosti White Nile, Sudan. IAR Journal of Agriculture Research and Life Sciences 1: 143–147.
  • Medhat HH, Abd El-Azeem RM, Mahrous H, Dawood AK. 2020. Cytochrome oxidase I (COI) gene analysis of the Nile puffer fish (Tetraodon lineatus) from Lake Nasser, Aswan, Egypt. Egyptian Journal of Aquatic Biology and Fisheries 24: 75–84. https://doi.org/10.21608/ejabf.2020.88329
  • Neumann D, Obermaier H, Moritz T. 2016. Annotated checklist for fishes of the main Nile Basin in the Sudan and Egypt based on recent specimen records (2006–2015). Cybium 40: 287–317.
  • Nwani CD, Becker S, Braid HE, Ude EF, Okogwu OI, Hanner R. 2011. DNA barcoding discriminates freshwater fishes from southeastern Nigeria and provides river system-level phylogeographic resolution within some species. Mitochondrial DNA 22: 43–51. https://doi.org/10.3109/19401736.2010.536537
  • Ottoni FP, Mattos JLO, Katz AM, Bragança PHN. 2019. Phylogeny and species delimitation based on molecular approaches on the species of the Australoheros autrani group (Teleostei, Cichlidae), with biogeographic comments. Zoosystematics and Evolution 95: 49–64. https://doi.org/10.3897/zse.95.31658
  • Rasmussen RS, Morrissey MT, Hebert PDN. 2009. DNA barcoding of commercially important salmon and trout species (Oncorhynchus and Salmo) from North America. Journal of Agricultural and Food Chemistry 57: 8379–8385. https://doi.org/10.1021/jf901618z
  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.
  • Sandon H. 1950. An illustrated guide to the freshwater fishes of the Sudan. Khartoum, Sudan: Sudan Notes and Records, on behalf of Gordon Memorial College.
  • Triantafyllidis A, Bobori D, Koliamitra C, Gbandi E, Mpanti M, Petriki O, Karaiskou N. 2011. DNA barcoding analysis of fish species diversity in four north Greek lakes. Mitochondrial DNA 22(Suppl.): S37–S42. https://doi.org/10.3109/19401736.2010.542242
  • Ude GN, Igwe DO, Brown C, Jackson M, Bangura A, Ozokonkwo-Alor O, et al. 2020. DNA barcoding for identification of fish species from freshwater in Enugu and Anambra states of Nigeria. Conservation Genetics Resources 12: 643–658. https://doi.org/10.1007/s12686-020-01155-7
  • Valdez-Moreno M, Vásquez-Yeomans L, Elias-Gutiérrez M, Ivanova NV, Hebert PDN. 2010. Using DNA barcodes to connect adults and early life stages of marine fishes from the Yucatan Peninsula, Mexico: potential in fisheries management. Marine and Freshwater Research 61: 655–671. https://doi.org/10.1071/MF09222
  • Yang L, Arunachalam M, Sado T, Levin BA, Golubtsov AS, Freyhof J et al. 2012. Molecular phylogeny of the cyprinid tribe Labeonini (Teleostei: Cypriniformes). Molecular Phylogenetics and Evolution 65: 362–379. https://doi.org/10.1016/j.ympev.2012.06.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.