283
Views
209
CrossRef citations to date
0
Altmetric
Original Article

Properties of the Evoked Potential Generators: Current Source-Density Analysis of Visually Evoked Potentials in the Cat Cortex

Pages 33-59 | Received 12 Feb 1986, Published online: 07 Jul 2009

References

  • Allman J., Miezin F., McGuinness E. Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience 1985; 8: 407–430
  • Başar E. EEG-brain dynamics. Relation between EEG and brain evoked potentials. Elsevier/North-Holland, Amsterdam 1980
  • Baumgartner G., Braun J. L., Schulz A. Responses of single units of the cat visual system to rectangular stimulus patterns. Journal of Neurophysiology 1965; 28: 1–18
  • Bilge M., Bingle A., Seneviratne K. N., Whitteridge D. A map of the visual cortex in the cat. Journal of Physiology 1967; 191: 116P–118P
  • Blademore C., Tobin E. A. Lateral inhibition between orientation detectors in the cat's visual cortex. Experimental Brain Research 1972; 15: 439–440
  • Brazier M. A. B., Killiam K. F., Hance A. J. The reactivity of the nervous system in the light of the past history of the organism. Sensory communication, W. A. Rosenblith. The MIT Press and John Wiley and Sons Inc., New York, London 1961; 699–716
  • Brooks B. A., Huber C. Influence of incremental light duration on the off-response of the dark adapted cat. Vision Research 1971; 11: 1015–1018
  • Brooks B. A., Huber C. Evidence for the role of the transient neural “off-response” in perception of light decrement: A psycho physical test derived from neuronal data in the cat. Vision Research 1972; 12: 1291–1296
  • Campbell F. W., Maffei L. Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. Journal of Physiology 1970; 207: 635–652
  • Collonier M., Rossignol S. Heterogeneity of the cerebral cortex. Basic mechanisms of epilepsy, H. H. Jasper. Little, Brown, Boston 1969; 29–40
  • Cowey A. Projection of the retina on to striate and prestriate cortex in the squirrel monkey, saimiri sciureus. Journal of Neurophysiology 1964; 27: 366–393
  • Davis T. L., Sterling P. Microcircuitry of cat visual cortex: classification of neurons in layer IV of area 17, and identification of the patterns of lateral geniculate input. Journal of Comparative Neurology 1979; 188: 599–628
  • Doty R. W. Potentials evoked in cat cerebral cortex by diffuse and punctiform photic stimuli. Journal of Neurophysiology 1958; 21: 437–464
  • Ebersole J. S., Chatt A. B. Laminar interactions during neocortical epileptogenesis. Brain Research 1984; 298: 253–271
  • Ebersole J. S., Kaplan B. J. Intracortical evoked potentials of cats elicited by punctuate visual stimuli in receptive field peripheries. Brain Research 1981; 224: 160–164
  • Ferster D., LeVay S. The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. Journal of Comparative Neurology 1978; 182: 923–944
  • Ferster D., Lindström S. An intracellular analysis of geniculocortical connectivity in area 17 of the cat. Journal of Physiology 1983; 342: 181–215
  • Fischer B., Krüger J. The shift effect in the cat's lateral geniculate nucleus. Experimental Brain Research 1974; 21: 225–227
  • Fisken R. A., Garey L. J., Powell T. P. S. The intrinsic, association and commissural connections of area 17 of the visual cortex. Philosophical Transactions of the Royal Society of Great Britain 1975; 272: 487–536
  • Fox S. S., O'Brian J. H. Duplication of evoked potential waveform by curve of probability of firing of a single cell. Science 1965; 147: 888–890
  • Frascella J., Lehmkuhle S. An electrophysiological assessment of X and Y cells as pattern and flicker detectors in the dorsal lateral geniculate nucleus of the cat. Experimental Brain Research 1984; 55: 117–126
  • Freygang W. H., Jr., Landau W. M. Some relations between resistivity and electrical activity in the cerebral cortex of the cat. Journal of Cellular Physiology 1955; 45: 377–392, (Suppl.)
  • Fromm G. H., Bond H. W. The relationship between neuron activity and cortical steady potentials. Electroencephalography & Clinical Neurophysiology 1967; 22: 159–166
  • Fuster J. M. Excitation and inhibition of neuronal firing in visual cortex by reticular stimulation. Science 1961; 133: 2011–2012
  • Fuster J. M., Docter R. F. Variations of optic evoked potentials as a function of reticular activity in rabbits with chronically implanted electrodes. Journal of Neurophysiology 1962; 25: 324–336
  • Garey L. J., Jones E. G., Powell T. P. S. Interrelationships of striate and extrastriate cortex with the primary sites of the visual pathway. Journal of Neurology, Neurosurgery and Psychiatry 1968; 31: 135–157
  • Garey L. J., Powell T. P. S. An experimental study of the termination of the lateral geniculocortical pathway in the cat and monkey. Proceedings of the Royal Society of London 1971; 179: 41–63
  • Gilbert C. D., Wiesel T. N. Morphology and intracortical projections of functionally characterized neurones in the cat visual cortex. Nature 1979; 280: 120–125
  • Gilbert C. D., Wiesel T. N. Clustered intrinsic connections in cat visual cortex. Neuroscience 1983; 3: 1116–1133
  • Gilbert C. D., Wiesel T. N. Intrinsic connectivity and receptive field properties in visual cortex. Vision Research 1985; 25: 365–374
  • Glass J. D. Photic evoked activity in the visual cortex of monocularly deprived cats. Experimental Neurology 1977; 55: 211–225
  • Glass J. D., Hall R. W. Pattern processing and slow waves in visual cortex of visually deprived cats. Electroencephalography & Clinical Neurophysiology 1982; 53: 334–337
  • Gonzalez-Lima F., Scheich H. Functional activation in the auditory system of the rat produced by arousing reticular stimulation: a 2-deoxyglucose study. Brain Research 1984; 299: 201–214
  • Hammond P. Inadequacy of nitrous oxide/oxygen mixtures for maintaining anaesthesia in cats: Satisfactory alternatives. Pain 1978; 5: 143–151
  • Harvey A. R. The afferent connexions and laminar distribution of cells in area 18 of the cat. Journal of Physiology 1980; 302: 483–505
  • Hornung J. P., Garey L. J. The thalamic projection to cat visual cortex: ultrastructure of neurons identified by Golgi impregnation or retrograde horseradish peroxidase transport. Neuroscience 1981; 6: 1053–1068
  • Hubel D. H., Wiesel T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology 1962; 160: 106–154
  • Hubel D. H., Wiesel T. N. Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. Journal of Neurophysiology 1985; 28: 229–289
  • Jeffreys D. A. The physiological significance of pattern visual evoked potentials. Visual evoked potentials in man: new developments, J. E. Desmedt. Clarendon Press, Oxford 1977; 134–167
  • John E. R. Electrophysiological studies of conditioning. The neurosciences, G. C. Quarton. The Rockefeller University Press, New York 1967; 690–704
  • Jones B. H. Responses of single neurons in cat visual cortex to a simple and more complex stimulus. Americal Journal of Physiology 1970; 218: 1102–1107
  • Kawamura K. Corticocortical fiber connections of the cat cerebrum. III. The occipital region. Brain Research 1973; 51: 41–60
  • Kulikowski J. J. Pattern and movement detection in man and rabbit: Separation and comparison of occipital potentials. Vision Research 1978; 18: 183–189
  • Laufer M., Verzeano M. Periodic activity in the visual system of the cat. Vision Research 1967; 7: 215–229
  • Lennie P. Parallel visual pathways: A review. Vision Research 1980; 20: 561–594
  • LeVay S., Gilbert C. D. Laminar patterns of geniculo cortical projection in the cat. Brain Research 1976; 113: 1–19
  • Leventhal A. G. Evidence that the different classes of relay cells of cat's lateral geniculate nucleus terminate in different layers of the striate cortex. Experimental Brain Research 1979; 37: 349–372
  • Libet B., Alberts W. W., Wright E. W., Jr., Feinstein B. Responses of human somatosensory cortex to stimuli below threshold for conscious sensation. Science 1967; 158: 1597–1600
  • Lund J. S., Henry G. H., Macqueen C. L., Harvey A. R. Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey. Journal of Comparative Neurology 1979; 184: 599–618
  • Maffei L., Fiorentini A. The unresponsive regions of visual cortical receptive fields. Vision Research 1976; 16: 1131–1139
  • Malpeli J. G. Activity of cells in area 17 of the cat in absence of input from layer A of lateral geniculate nucleus. Journal of Neurophysiology 1983; 49: 595–610
  • Martin K. A. C., Whitteridge D. Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. Journal of Physiology 1984; 353: 463–504
  • McIlwain J. T. Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity. Journal of Neurophysiology 1964; 27: 1154–1173
  • Mitzdorf U. Justification of the assumption of constant resistivity used in current source-density calculations. Journal of Physiology 1980; 304: 216–220, Appendix
  • Mitzdorf U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews 1985; 65: 37–100
  • Mitzdorf U., Singer W. Laminar segregation of afferents to lateral geniculate nucleus of the cat: An analysis of current source density. Journal of Neurophysiology 1977; 40: 1227–1244
  • Mitzdorf U., Singer W. Prominent excitatory pathways in the cat visual cortex (A 17 and A 18): A current source density analysis of electrically evoked potentials. Experimental Brain Research 1978; 33: 371–394
  • Mountcastle V. B. An organizing principle for cerebral function: the unit module and the distributed system. The neurosciences, fourth study program, F. O. Schmitt, F. G. Worden. MIT Press, Cambridge 1979; 21–42
  • Movshon J. A., Thompson I. D., Tolhurst D. J. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. Journal of Physiology 1978a; 283: 53–77
  • Movshon J. A., Thompson I. D., Tolhurst D. J. Receptive field organization of complex cells in the cat's striate cortex. Journal of Physiology 1978b; 283: 79–99
  • Mulliken W. H., Jones J. P., Palmer L. A. Receptive-field properties and laminar distribution of X-like and Y-like simple cells in cat area 17. Journal of Neurophysiology 1984; 52: 350–371
  • Nicholson C., Freeman J. A. Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. Journal of Neurophysiology 1975; 38: 356–368
  • Pitts W. Investigation on synaptic transmission. Cybernetics. Trans. 9th Conf, H. Von Foerster. Josiah Macy Found., New York 1952; 159–166
  • Price D. J. Pattern of cytochrome oxidase activity in areas 17, 18 and 19 of the visual cortex of cats and kittens. Experimental Brain Research 1985; 58: 125–133
  • Riva Sanseverino E., Galletti C., Maioli M. G., Squatrito S. Single unit responses to visual stimuli in cat cortical areas 17 and 18. III. Responses to moving stimuli of variable velocity. Archives of Italian Biology 1979; 117: 248–267
  • Rockland K. S., Lund J. S. Intrinsic laminar lattice connections in primate visual cortex. Journal of Comparative Neurology 1983; 216: 303–318
  • Rose D., Blakemore C. An analysis of orientation selectivity in the cat's visual cortex. Experimental Brain Research 1974; 20: 1–17
  • Sakhiulina G. T., Merzhanova G. K. Stable changes in the patterns of the recruiting response associated with a well established conditioned reflex. Electroencephalography & Clinical Neurophysiology 1966; 20: 50–58
  • Siegel J. M., Coleman P. D., Riesen A. H. Pattern evoked response deficiency in pattern deprived cats. Electroencephalography & Clinical Neurophysiology 1973; 35: 569–573
  • Sillito A. M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. Journal of Physiology 1975; 250: 305–329
  • Singer W., Phillips W. A. Function and interaction of on and off transients in vision. II. Neurophysiology. Experimental Brain Research 1974; 19: 507–521
  • Singer W., Tretter F., Cynader M. Organization of cat striate cortex: A correlation of receptive-field properties with afferent and efferent connections. Journal of Neurophysiology 1975; 38: 1080–1098
  • Snyder A., Shapley R. Deficits in the visual evoked potentials of cats as a result of visual deprivation. Experimental Brain Research 1979; 37: 73–86
  • Somogyi P. The study of Golgi stained cells and of experimental degeneration under the electron microscope: A direct method for the identification in the visual cortex of three successive links in a neuron chain. Neuroscience 1978; 3: 167–180
  • Srebro R. Localization of visually evoked cortical activity in humans. Journal of Physiology 1985; 360: 233–246
  • Szentágothai J. Local neuron circuits of the neocortex. The neurosciences, fourth study program, F. O. Schmitt, F. G. Worden. MIT press, Cambridge 1979; 399–415
  • Tanaka K. Cross-correlation analysis of geniculo-striate neuronal relationships in cats. Journal of Neurophysiology 1983; 49: 1303–1318
  • Torres F., Warner J. S. Some characteristics of delayed responses to photic stimuli in the cat. Electroencephalography & Clinical Neurophysiology 1962; 14: 654–663
  • Toyama K., Matsunami K., Ohno T., Tokashiki S. An intracellular study of neuronal organization in the visual cortex. Experimental Brain Research 1974; 21: 45–66
  • Tusa R. J., Palmer L. A., Rosenquist A. C. The retinotopic organization of area 17 (striate cortex) in the cat. Journal of Comparative Neurology 1978; 177: 213–236
  • Tusa R. J., Rosenquist A. C., Palmer L. A. Retinotopic organization of areas 18 and 19 in the cat. Journal of Comparative Neurology 1979; 185: 657–678
  • Vaughan H. G., Gross C. G. Cortical responses to light in unanaesthetized monkeys and their alteration by visual system lesions. Experimental Brain Research 1969; 8: 19–36
  • Wilson M. E. Cortico-cortical connexions of the cat visual areas. Journal of Anatomy (Lond.) 1968; 102: 375–386

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.