3
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Modulation of the Somatosensory Evoked Potentials by the Input Information Originating from the Gastrocnemius and Sural Nerves in the Dog

&
Pages 151-178 | Received 03 Apr 1987, Published online: 07 Jul 2009

References

  • Abbruzzese G., Berardelli A., Rothwell J. C., Day B. L., Marsden C. D. Cerebral potentials and electromyographic responses evoked by stretch of wrist muscles in man. Experimental Brain Research 1985; 58: 544–551
  • Abrahams V. C. Cervico-lumbar reflex interactions involving a proprioceptive receiving area of the cerebral cortex. Journal of Physiology (London) 1970; 209: 45–56
  • Allison T., Goff W. R., Williamson P. D., VanGilder J. C. On the neural origin of early components of the human somatosensory evoked potentials. Clinical uses of cerebral, brainstem and spinal somatosensory evoked potentials, J. E. Desmedt. Karger, Basel 1980
  • Allison T., Hume A. L. A comparative analysis of short-latency somatosensory evoked potentials in man, monkey, cat, and rat. Experimental Neurology 1981; 72: 592–611
  • Amassian V. E., Berlin L. Early cortical projection of Group I afferents in forelimb muscle nerves of cat. Journal of Physiology (London) 1958; 143: 61P
  • Andersson S. A., Landgren S., Wolsk C. The thalamic relay and cortical projection of group I muscle afferents from the forelimb of the cat. Journal of Physiology (London) 1966; 183: 576–591
  • Arezzo J., Legatt A. D., Vaughan H. G. Topography and intracranial sources of somatosensory evoked potentials in the monkey. I: Early components. Electroencephalography and Clinical Neurophysiology 1979; 46: 155–172
  • Arezzo J. C., Vaughan H. C., Jr., Legatt A. D. Topography and intracranial sources of somatosensory evoked potentials in the monkey. II: Cortical components. Electroencephalography and Clinical Neurophysiology 1981; 51: 1–18
  • Boyd I. A., Davey M. R. Composition of peripheral nerves. E., S. Livingstone Ltd. 1968
  • Brooks V. B., Rudomin P., Slayman C. L. Peripheral receptive fields of neurons in the cat's cerebral cortex. Journal of Neurophysiology 1961; 24: 302–325
  • Burke D., Skuse N. F., Lethlean K. Cutaneous and muscle components of the cerebral potential evoked by electrical stimulation of human peripheral nerves. Electroencephalography and Clinical Neurophysiology 1981; 51: 579–588
  • Chofflon M., Lachat J. M., Rüegg D. G. A transcortical loop demonstrated by low threshold muscle afferents in the awake monkey. Journal of Physiology (London) 1982; 323: 393–402
  • Cohen L., Starr A. About the origin of cerebral somatosensory potentials evoked by Achilles tendon taps in humans. Electroencephalography and Clinical Neurophysiology 1985; 62: 108–116
  • Cole J., Glees P. Effects of small lesions in sensory cortex in trained monkeys. Journal of Neurophysiology 1954; 17: 1–13
  • Conrad B., Dressler D., Benecke R. Changes of somatosensory evoked potentials in man as correlates of transcortical reflex mediation. Neuroscience Letters 1984; 46: 103–107
  • Caminotti R., Innocenti G. M., Tanzoni T. The anatomical substrate of callosal messages from SI and SII in the cat. Experimental Brain Research 1979; 35: 295–314
  • Dawson G. D. The effect of cortical stimulation on transmission through the cuneate nucleus in the anaesthetized cat. Journal of Physiology (London) 1958; 142: 2–3P
  • Dong W. K., Harkins S. W., Ashleman B. T. Origins of cat somatosensory far-field and near-field evoked potentials. Electroencephalography and Clinical Neurophysiology 1982; 53: 143–165
  • Gandevia S., Burke D., McKeon B. The relationship between the size of a muscle afferent volley and the cerebral potential it produces. Journal of Neurology, Neurosurgery and Psychiatry 1982; 45: 705–710
  • Gadevia S., McKeon B., Burke D. The projection of muscle afferents from the hand to cerebral cortex in man. Brain 1984; 107: 1–13
  • Gardner E., Hadded B. Pathways to the cerebral cortex for afferent fibers from the hindleg of the cat. American Journal of Physiology 1953; 172: 475–482
  • Ghez C., Shinoda Y. Spinal mechanisms of the functional stretch reflex. Experimental Brain Research 1978; 32: 55–68
  • Gilmore R. L., Bass N. H., Wright E. A., Greathouse D., Stanback K., Norvell E. Developmental assessment of spinal cord and cortical evoked potentials after tibial nerve stimulation: effects of age and stature on normative data during childhood. Electroencephalography and Clinical Neurophysiology 1985; 62: 241–251
  • Glassman R. B. Cutaneous discrimination and motor control following somatosensory cortical ablations. Physiology and Behavior 1970; 5: 1009–1019
  • Goff W. R., Allison T., Vaughan H. G., Jr. The functional neuroanatomy of event-related potentials. Event related brain potentials in man, E. Callaway, T. Tueting, S. H. Kaslo. Academic Press, New York 1978; 1–79
  • Gordon G., Jukes M. G. M. Descending influence on the exteroceptive organizations of the cat's gracile nucleus. Journal of Physiology (London) 1964; 173: 291–319
  • Greenberg R. P., Ducker T. B. Evoked potentials in the clinical neurosciences. Journal of Neurosurgery 1982; 56: 1–18
  • Hinde R. A. Behavioural habituation. Short-term changes in neural activity and behaviour, G. Horn, R. A. Hinde. Cambridge University Press, Cambridge 1970
  • Hore J., Preston J. B., Durkovic R. G., Cheaney P. D. Responses of cortical neurons (area 3a and 4) to ramp stretch of hind-limb muscles in the baboon. Journal of Neurophysiology 1976; 39: 484–500
  • Hume A. L., Cant B. R. Conduction time in central somatosensory pathways in man. Electroencephalography and Clinical Neurophysiology 1978; 45: 361–375
  • Hutchinson J. W., Kusske J. A., Verzeano M. Cortical and thalamic activity in the late phases of somatosensory evoked potentials. Electroencephalogruphy and Clinical Neurophysiology 1978; 45: 35–44
  • Jones E. G., Porter R. What is area 3a?. Brain Research Reviews 1980; 2: 1–43
  • Kennard M. A., Kessler M. M. Studies of motor performance after parietal ablations in monkeys. Journal of Neurophysiology 1940; 3: 248–257
  • Landgren S., Silfvenius H. Projection to cerebral cortex of group I muscle afferents from the cat's hind limb. Journal of Physiology (London) 1969; 200: 353–372
  • Landgren S., Silfvenius H. Nucleus z, the medullary relay in the projection path to the cerebral cortex of group I muscle afferents from the cat's hind limb. Journal of Physiology (London) 1971; 218: 551–511
  • Levitt M., Carreras M., Liu C. N., Chambers W. W. Pyramidal and extrapyramidal modulation of somatosensory activity in gracile and cuneate nuclei. Archiv italien Biologie 1964; 102: 197–229
  • Levitt J., Levitt M. Sensory hind-limb representation in Sm I cortex of the cat. A unit analysis. Experimental Neurology 1968; 22: 259–275
  • Lucier G. E., Rüegg D. C., Wiesendanger M. Responses of neurones in motor cortex and in area 3a to controlled stretches of forelimb muscles in rhesus monkeys. Journal of Physiology (London) 1975; 251: 833–853
  • Magni F., Melzack R., Moruzzi G., Smith C. J. Direct pyramidal influences on dorsal column nuclei. Archiv italien Biologie 1959; 97: 357–377
  • Mallart A. Thalamic projection of muscle nerve afferents in the cat. Journal of Physiology (London) 1968; 194: 337–353
  • Miller A. D., Brooks V. B. Late muscular responses to arm perturbations persist during supraspinal disfunctions in monkeys. Experimental Brain Research 1981; 41: 146–158
  • Morse R. W., Adkins R. J., Towe A. L. Population and modality characteristics of neurons in the coronal region of somatosensory area I of the cat. Experimental Neurology 1965; 11: 419–440
  • Mouncastle V. E. Modality and topographic properties of single neurons of cat's somatic-sensory cortex. Journal of Neurophysiology 1957; 20: 408–434
  • Murphy J. T., Wong Y. C., Kwan H. C. Afferent-efferent linkages in motor cortex for single forelimb muscles. Journal of Neurophysiology 1975; 38: 990–1014
  • Oscarsson O., Rosen I. Projection to cerebral cortex of large muscle spindle afferents in forelimb nerves of the cat. Journal of Physiology (London) 1963; 169: 924–945
  • Oscarsson O., Rosen I. Short latency projections to the cat cerebral cortex from the skin and muscle afferents in the contralateral forelimb. Journal of Physiology (London) 1966; 182: 164–185
  • Oscarsson O., Rosen I., Sulg I. Organization of neurons in the cat cerebral cortex that are influenced from group I muscle afferents. Journal of Physiology (London) 1966; 183: 189–210
  • Peele T. L. Acute and chronic parietal lobe ablations in monkeys. Journal of Neurophysiology 1944; 7: 269–286
  • Phillips C. B., Powell T. P. S., Wiesendanger M. Projection from low threshold muscle afferents of hand and forearm to area 3a of baboon's cortex. Journal of Physiology (London) 1971; 217: 419–446
  • Rademaker G. G. J., Winkler C. Annotations on the physiology and the anatomy of a dog living 38 days without both hemispheres of the cerebrum and without cerebellum. Proc, K. ned. Akad. Wet. 1928; 31: 332–338
  • Rémond A. Handbook of electroencephalography and clinical neurophysiology. Vol. 8. Electrical reactions of the brain and complementary methods of evaluation. Part A: Evoked responses. Elsevier, Amsterdam 1975
  • Rosén I. Afferent connections to group I activated cells in the main cuneate nucleus of the cat. Journal of Physiology (London) 1969a; 205: 209–230
  • Rosen I. Excitation of group I activated thalamocortical relay neurons in the cat. Journal of Physiology (London) 1969b; 205: 237–255
  • Rüegg D. G., Lachat J. M., Wiesendanger M. Transcortical facilitation of the H-(monosynaptic) reflex in monkeys. Society of Neuroscience Abstracts 1977; 3: 277
  • Rüegg D. G., Chofflon M. Peripheral and transcortical loops activated by electrical stimulation of the tibial nerve in the monkey. Experimental Brain Research 1983; 50: 293–298
  • Starr A., McKeon B., Skuse N., Burke D. Cerebral evomed potentials to muscle stretch in man. Brain 1981; 104: 149–166
  • Swett J. E., Bourassa C. M. Short latency activation of pyramidal tract cells by group 1 afferent vollevs in the cat. Journal of Physiology (London) 1967; 189: 101–117
  • Tan Ü. Paw preferences in dogs. International Journal of Neuroscience 1986a; 32: 825–830
  • Tan O. Symmetric distribution in latencies of cortical somatosensory potentials evoked by right and left posterior tibial nerve stimulation in right-, left-, and mixed-handed men and women. Perceptual and motor skills 1986b; 62: 39–47
  • Tan Ü., Çaliskan S. Asymmetries in the cerebral dimensions and fissures of the dog. International Journal of Neuroscience
  • Towe A. L., Jabbur S. J. Cortical inhibition of neurons in dorsal column nuclei of cat. Journal of Neurophysiology 1961; 24: 488–498
  • Tsuji S., Lüders H., Lesser R. P., Dinner D. S., Klem G. Subcortical and cortical somatosensory potentials evoked by posterior tibial nerve stimulation: normative values. Electroencephalography and Clinical Neurophysiology 1984; 59: 214–228
  • Vejsada R., Palecek J., Hnik P., Soukup T. Postnatal development of conduction velocity and fibre size in the rat tibial nerve. International Journal of Developmental Neuroscience 1985; 3: 583–595
  • Woolsey C. N. Organization of somatic sensory and motor areas of the cerebral cortex. Biological and biochemical bases of behavior, H. F. Harlow, C. N. Woolsey. University of Wisconsin Press, Madison 1958

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.