Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 40, 2010 - Issue 6
147
Views
8
CrossRef citations to date
0
Altmetric
Animal Pharmacokinetics and Metabolism

Metabolism, pharmacokinetics and excretion of the GABAA receptor partial agonist [14C]CP-409,092 in rats

, , &
Pages 400-414 | Received 19 Dec 2009, Accepted 17 Feb 2010, Published online: 24 Mar 2010

References

  • Constantino L, Paixao P, Moreira R, Portela MJ, Do Rosario VE, Iley J. (1999). Metabolism of primaquine by liver homogenate fractions. Evidence for monoamine oxidase and cytochrome P450 involvement in the oxidative deamination of primaquine to carboxyprimaquine. Exp Tox Path 51(4–5):299–303.
  • Fukuda H, Ito Y. (1998). Pharmacology of the GABA receptor functions in the central nervous systems. J. Pharm Soc Japan 118(9):339–52.
  • Hamilton RA, Garnett WR, Kline BJ (1981). Determination of mean valproic acid serum level by assay of a single pooled sample. Clin Pharmacol Ther 29(3):408–13.
  • Hop CECA, Wang Z, Chen Q, Kwei G. (1998) Plasma-pooling methods to increase throughput for in vivo pharmacokinetic screening. J Pharm Sci 87(7):901–3.
  • Killam EK, Suria A. (1980). Benzodiazepines. In: Glaser GH, Penry JK, Woodbury DM, eds. Antiepileptic drugs: Mechanisms of action. Advances in Neurology Vol. 27. New York, NY: Raven, pp. 597–615.
  • Licata SC, Rowlett JK. (2008). Abuse and dependence liability of benzodiazepine-type drugs: GABAA receptor modulation and beyond. Pharmacol Biochem Behav 90(1):74–89.
  • MacDonald RL. (2002). Benzodiazepines mechanisms of action. In: Levy RH, Mattson RH, Meldrum BS, Perucca E, eds. Antiepileptic drugs, 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 179–86.
  • Mutlib AE, Chen S, Espina R, Shockcor J, Prakash S, Gan L. (2002b). P450 mediated metabolism of 1-[3-(aminomethyl)-phenyl]-N-[3-fluoro-2-(methylsulfonyl)-[1,1-biphenyl]-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC 423) and its analogues to aldoximes. Characterization of novel glutathione conjugates of postulated intermediates derived from aldoximes. Chem Res Toxicol 15:63–75.
  • Mutlib AE, Dickenson P, Chen S-Y, Espina RJ, Daniels JS, Gan L-S. (2002a). Bioactivation of benzylamine to reactive intermediates in rodents: formation of glutathione, glutamate, and peptide conjugate. Chem Res Toxicol 15(9):1190–207.
  • Mutlib AE, Shockcor J, Chen S, Espina R, Lin J, Graciani N, Prakash S, Gan L. (2001). Formation of unusual glutamate conjugates of 1-[3-(aminomethyl)phenyl]-N-[3-fluoro-2-(methylsulfonyl)-[1,1-biphenyl]-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC 423) and its analogues. The role of 1-glutamyltranspeptidase in the biotransformation of benzylamines. Drug Metab Dispos 29:1296–306.
  • Mutlib AE, Shockcor J, Chen SY, Espina R, Pinto DJ, Orwatt M, Prakash S, Gan L. (2002c). Disposition of 1-[3-(aminomethyl)phenyl]-N-[3-fluoro-2-(methylsulfonyl)-[1,1-biphenyl]-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC 423 by novel metabolic pathways. Characterization of unusual metabolites by liquid chromatography/mass spectrometry and NMR. Chem Res Toxicol 15:48–62.
  • Obach RS, Cox LM, Tremaine LM. (2005). Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos 33(2):262–70.
  • Riad LE, Chan KK, Sawchuk RJ. (1991). Determination of the relative formation and elimination clearance of two major carbamazepine metabolites in humans: a comparison between traditional and pooled sample analysis. Pharm Res 8(4):541–3.
  • Roberts MS, Magnusson BM, Burczynski FJ, Weiss M (2002). Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet 41:751–90.
  • Rogawski MA. (2002). Principles of antiepileptic drug action. In: Levy RH, Mattson RH, Meldrum BS, Perucca E, eds. Antiepileptic drugs, 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 3–22.
  • Salva M, Jansat JM, Martinez-Tobed A, Palacios JM. (2003). Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan. Drug Metab Dispos 31(4):404–11.
  • Shaffer CL, Gunduz M, Vaz AD, Venkatakrishnan K, Burstein AH. (2008). Metabolism and disposition of a γ-aminobutyric acid type A receptor partial agonist in humans. Drug Met Dispos 36(4):655–62.
  • Theobald DS, Maurer HH. (2007). Identification of monoamine oxidase and cytochrome P450 isoenzymes involved in the deamination of phenethylamine-derived designer drugs (2C-series). Biochem Pharm 73(2):287–97.
  • Timperio AM, Kuiper HA, Zolla L. (2003). Identification of a furazolidone metabolite responsible for the inhibition of amino oxidases. Xenobiotica 33(2):153–67.
  • Wafford KA, Whiting PJ. (2007). Sedatives and hypnotics. In: Sibley DR, Hanin I, Kuhan M, Skolnick P eds. Handbook of Contemporary Neuropharmacology, chapter 6, Vol 3: New York, NY: Wiley, p 177–99.
  • Wang Y, Roy A, Sun L, Lau CE. (1999). A double-peak phenomenon in the pharmacokinetics of alprazolam after oral administration. Drug Met Dispos 27(8):855–9.
  • Yu A-M Granvil, CP, Haining RL, Krausz KW, Corchero J, Kupfer A, Idle JR, Gonzalez FJ. (2003). The relative contribution of monoamine oxidase and cytochrome P450 isozymes to the metabolic deamination of the trace amine tryptamine. J Pharm Exp Ther 304(2):539–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.