Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 43, 2013 - Issue 2
280
Views
10
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

2,3,7,8-Tetrachlorodibenzo-p-dioxin enhances CCl4-induced hepatotoxicity in an aryl hydrocarbon receptor-dependent manner

, , , , , , & show all
Pages 161-168 | Received 22 May 2012, Accepted 26 Jun 2012, Published online: 27 Jul 2012

References

  • Anderson LM, Angel M. (1980). Induction of dimethylnitrosamine demethylase activity in mouse liver by polychlorinated biphenyls and 3-methylcholanthrene. Biochem Pharmacol 29:1375–1383.
  • Braeuning A, Köhle C, Buchmann A, Schwarz M. (2011). Coordinate regulation of cytochrome P450 1a1 expression in mouse liver by the aryl hydrocarbon receptor and the beta-catenin pathway. Toxicol Sci 122:16–25.
  • Cheadle C, Vawter MP, Freed WJ, Becker KG. (2003). Analysis of microarray data using Z score transformation. J Mol Diagn 5:73–81.
  • Cheung C, Akiyama TE, Kudo G, Gonzalez FJ. (2003). Hepatic expression of cytochrome P450s in hepatocyte nuclear factor 1-alpha (HNF1alpha)-deficient mice. Biochem Pharmacol 66:2011–2020.
  • Cheung C, Yu AM, Ward JM, Krausz KW, Akiyama TE, Feigenbaum L, Gonzalez FJ. (2005). The cyp2e1-humanized transgenic mouse: role of cyp2e1 in acetaminophen hepatotoxicity. Drug Metab Dispos 33:449–457.
  • Cronkite EP, Bullis J, Inoue T, Drew RT. (1984). Benzene inhalation produces leukemia in mice. Toxicol Appl Pharmacol 75:358–361.
  • De Matteis F, Dawson SJ, Boobis AR, Comoglio A. (1991). Inducible bilirubin-degrading system of rat liver microsomes: role of cytochrome P450IA1. Mol Pharmacol 40:686–691.
  • Elizondo G, Fernandez-Salguero P, Sheikh MS, Kim GY, Fornace AJ, Lee KS, Gonzalez FJ. (2000). Altered cell cycle control at the G(2)/M phases in aryl hydrocarbon receptor-null embryo fibroblast. Mol Pharmacol 57:1056–1063.
  • Farris GM, Robinson SN, Gaido KW, Wong BA, Wong VA, Hahn WP, Shah RS. (1997). Benzene-induced hematotoxicity and bone marrow compensation in B6C3F1 mice. Fundam Appl Toxicol 36:119–129.
  • Fernandez-Salguero P, Pineau T, Hilbert DM, McPhail T, Lee SS, Kimura S, Nebert DW, Rudikoff S, Ward JM, Gonzalez FJ. (1995). Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268:722–726.
  • Fernandez-Salguero PM, Hilbert DM, Rudikoff S, Ward JM, Gonzalez FJ. (1996). Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol Appl Pharmacol 140:173–179.
  • Gaido KW, Maness SC. (1995). Post-transcriptional stabilization of urokinase plasminogen activator mRNA by 2,3,7,8-tetrachlorodibenzo-p-dioxin in a human keratinocyte cell line. Toxicol Appl Pharmacol 133:34–42.
  • Gaido KW, Maness SC, Leonard LS, Greenlee WF. (1992). 2,3,7,8-Tetrachlorodibenzo-p-dioxin-dependent regulation of transforming growth factors-alpha and -beta 2 expression in a human keratinocyte cell line involves both transcriptional and post-transcriptional control. J Biol Chem 267:24591–24595.
  • Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569.
  • Gonzalez FJ, Fernandez-Salguero P. (1998). The aryl hydrocarbon receptor: studies using the AHR-null mice. Drug Metab Dispos 26:1194–1198.
  • Henley DV, Bellone CJ, Williams DA, Ruh TS, Ruh MF. (2004). Aryl hydrocarbon receptor-mediated posttranscriptional regulation of IL-1beta. Arch Biochem Biophys 422:42–51.
  • Iba MM, Fung J, Giannone JV, Okey AB. (2000). Comparative induction of CYP1A1 expression by pyridine and its metabolites. Arch Biochem Biophys 378:299–310.
  • Kim SG, Williams DE, Schuetz EG, Guzelian PS, Novak RF. (1988). Pyridine induction of cytochrome P-450 in the rat: role of P-450j (alcohol-inducible form) in pyridine N-oxidation. J Pharmacol Exp Ther 246:1175–1182.
  • Kuroki J, Koga N, Yoshimura H. (1986). High affinity of 2,3,4,7,8-pentachlorodibenzofuran to cytochrome P-450 in the hepatic microsomes of rats. Chemosphere, 15, 731–738.
  • Leclercq IA, Field J, Enriquez A, Farrell GC, Robertson GR. (2000). Constitutive and inducible expression of hepatic CYP2E1 in leptin-deficient ob/ob mice. Biochem Biophys Res Commun 268:337–344.
  • Lieber CS. (2004). The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev 36:511–529.
  • Matsunaga N, Ikeda M, Takiguchi T, Koyanagi S, Ohdo S. (2008). The molecular mechanism regulating 24-hour rhythm of CYP2E1 expression in the mouse liver. Hepatology 48:240–251.
  • Medina-Díaz IM, Elizondo G. (2005). Transcriptional induction of CYP3A4 by o,p’-DDT in HepG2 cells. Toxicol Lett 157:41–47.
  • Mostafa MH, Ruchirawat M, Weisburger EK. (1981). Comparative studies on the effects of various microsomal enzyme inducers on the N-demethylation of dimethylnitrosamine. Biochem Pharmacol 30:2007–2011.
  • Okey AB, Riddick DS, Harper PA. (1994). The Ah receptor: mediator of the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Toxicol Lett 70:1–22.
  • Procházková J, Kabátková M, Bryja V, Umannová L, Bernatík O, Kozubík A, Machala M, Vondrácek J. (2011). The interplay of the aryl hydrocarbon receptor and ß-catenin alters both AhR-dependent transcription and Wnt/ß-catenin signaling in liver progenitors. Toxicol Sci 122:349–360.
  • Reyes-Hernández OD, Mejía-García A, Sánchez-Ocampo EM, Cabañas-Cortés MA, Ramírez P, Chávez-González L, Gonzalez FJ, Elizondo G. (2010). Ube2l3 gene expression is modulated by activation of the aryl hydrocarbon receptor: implications for p53 ubiquitination. Biochem Pharmacol 80:932–940.
  • Rodríguez-Sosa M, Elizondo G, López-Durán RM, Rivera I, Gonzalez FJ, Vega L. (2005). Over-production of IFN-gamma and IL-12 in AhR-null mice. FEBS Lett 579:6403–6410.
  • Sato S, Shirakawa H, Tomita S, Ohsaki Y, Haketa K, Tooi O, Santo N, Tohkin M, Furukawa Y, Gonzalez FJ, Komai M. (2008). Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver. Toxicol Appl Pharmacol 229:10–19.
  • Schwanekamp JA, Sartor MA, Karyala S, Halbleib D, Medvedovic M, Tomlinson CR. (2006). Genome-wide analyses show that nuclear and cytoplasmic RNA levels are differentially affected by dioxin. Biochim Biophys Acta 1759:388–402.
  • Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M. (2006). Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology 43:817–825.
  • Sinal CJ, Webb CD, Bend JR. (1999). Differential in vivo effects of alpha-naphthoflavone and beta-naphthoflavone on CYP1A1 and CYP2E1 in rat liver, lung, heart, and kidney. J Biochem Mol Toxicol 13:29–40.
  • Smith AG, Clothier B, Carthew P, Childs NL, Sinclair PR, Nebert DW, Dalton TP. (2001). Protection of the Cyp1a2(-/-) null mouse against uroporphyria and hepatic injury following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 173:89–98.
  • Whitlock JP Jr. (1999). Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol 39:103–125.
  • Wong FW, Chan WY, Lee SS. (1998). Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. Toxicol Appl Pharmacol 153:109–118.
  • Xu CX, Krager SL, Liao DF, Tischkau SA. (2010). Disruption of CLOCK-BMAL1 transcriptional activity is responsible for aryl hydrocarbon receptor-mediated regulation of Period1 gene. Toxicol Sci 115:98–108.
  • Yoon BI, Hirabayashi Y, Kawasaki Y, Kodama Y, Kaneko T, Kanno J, Kim DY, Fujii-Kuriyama Y, Inoue T. (2002). Aryl hydrocarbon receptor mediates benzene-induced hematotoxicity. Toxicol Sci 70:150–156.
  • Yoshioka H, Hiromori Y, Aoki A, Kimura T, Fujii-Kuriyama Y, Nagase H, Nakanishi T. (2012). Possible aryl hydrocarbon receptor-independent pathway of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced antiproliferative response in human breast cancer cells. Toxicol Lett 211:257–265.
  • Zordoky BN, El-Kadi AO. (2010). 2,3,7,8-Tetrachlorodibenzo-p-dioxin and beta-naphthoflavone induce cellular hypertrophy in H9c2 cells by an aryl hydrocarbon receptor-dependant mechanism. Toxicol In Vitro 24:863–871.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.