Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 43, 2013 - Issue 4
456
Views
32
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Role of carbonyl reducing enzymes in the phase I biotransformation of the non-steroidal anti-inflammatory drug nabumetone in vitro

, &
Pages 346-354 | Received 03 Jul 2012, Accepted 07 Aug 2012, Published online: 28 Sep 2012

References

  • Barski OA, Tipparaju SM, Bhatnagar A. (2008). The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 40:553–624.
  • Breyer-Pfaff U, Martin HJ, Ernst M, Maser E. (2004). Enantioselectivity of carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone by tissue fractions from human and rat and by enzymes isolated from human liver. Drug Metab Dispos 32:915–922.
  • Davies NM. (1997). Clinical pharmacokinetics of nabumetone. The dawn of selective cyclo-oxygenase-2 inhibition? Clin Pharmacokinet 33:404–416.
  • Haddock RE, Jeffery DJ, Lloyd JA, Thawley AR. (1984). Metabolism of nabumetone (BRL 14777) by various species including man. Xenobiotica 14:327–337.
  • Hedner T, Samulesson O, Währborg P, Wadenvik H, Ung KA, Ekbom A. (2004). Nabumetone: therapeutic use and safety profile in the management of osteoarthritis and rheumatoid arthritis. Drugs 64:2315–43; discussion 2344.
  • Hoffmann F, Maser E. (2007). Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily. Drug Metab Rev 39:87–144.
  • Hult M, Nobel CS, Abrahmsen L, Nicoll-Griffith DA, Jörnvall H, Oppermann UC. (2001). Novel enzymological profiles of human 11β-hydroxysteroid dehydrogenase type 1. Chem Biol Interact 130–132:805–814.
  • Iwatsubo T, Hirota N, Ooie T, Suzuki H, Shimada N, Chiba K, Ishizaki T, Green CE, Tyson CA, Sugiyama Y. (1997). Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther 73:147–171.
  • Kallberg Y, Oppermann U, Persson B. (2010). Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models. FEBS J 277:2375–2386.
  • Kassner N, Huse K, Martin HJ, Gödtel-Armbrust U, Metzger A, Meineke I, Brockmöller J, Klein K, Zanger UM, Maser E, Wojnowski L. (2008). Carbonyl reductase 1 is a predominant doxorubicin reductase in the human liver. Drug Metab Dispos 36:2113–2120.
  • Kobylinska K, Barlinska M, Kobylinska M. (2003). Analysis of nabumetone in human plasma by HPLC. Application to single dose pharmacokinetic studies. J Pharm Biomed Anal 32:323–328.
  • Liu J, Wen G, Cao D. (2009). Aldo-keto reductase family 1 member B1 inhibitors: old drugs with new perspectives. Recent Pat Anticancer Drug Discov 4:246–253.
  • Malátková P, Maser E, Wsól V. (2010). Human carbonyl reductases. Curr Drug Metab 11:639–658.
  • Mangan FR, Flack JD, Jackson D. (1987). Preclinical overview of nabumetone. Pharmacology, bioavailability, metabolism, and toxicology. Am J Med 83:6–10.
  • Martin HJ, Breyer-Pfaff U, Wsol V, Venz S, Block S, Maser E. (2006). Purification and characterization of akr1b10 from human liver: role in carbonyl reduction of xenobiotics. Drug Metab Dispos 34:464–470.
  • Matsumoto K, Nemoto E, Hasegawa T, Akimoto M, Sugibayashi K. (2011). In vitro characterization of the cytochrome P450 isoforms involved in the metabolism of 6-methoxy-2-napthylacetic acid, an active metabolite of the prodrug nabumetone. Biol Pharm Bull 34:734–739.
  • Matsunaga T, Shintani S, Hara A. (2006). Multiplicity of mammalian reductases for xenobiotic carbonyl compounds. Drug Metab Pharmacokinet 21:1–18.
  • McMahon FG, Vargas R, Ryan JR, Fitts DA. (1987). Nabumetone kinetics in the young and elderly. Am J Med 83:92–95.
  • Nobilis M, Kopecký J, Kvetina J, Svoboda Z, Pour M, Kunes J, Holcapek M, Kolárová L. (2003). Comparative biotransformation and disposition studies of nabumetone in humans and minipigs using high-performance liquid chromatography with ultraviolet, fluorescence and mass spectrometric detection. J Pharm Biomed Anal 32:641–656.
  • Nobilis M, Holcapek M, Kolárová L, Kopecký J, Kunes M, Svoboda Z, Kvetina J. (2004). Identification and determination of phase II nabumetone metabolites by high-performance liquid chromatography with photodiode array and mass spectrometric detection. J Chromatogr A 1031:229–236.
  • Nobilis M, Holmanová V, Szotáková B, Chamseddin Ch, Jira T, Matoušová E, Mikušek J, Kuneš J, Pour M. (2012). Chiral high-performance liquid chromatographic determination of nabumetone phase I metabolites: Stereospecificity of carbonyl reducing enzymes involved in nabumetone biotransformation. J Chromatogr B Submitted.
  • Odermatt A, Nashev LG. (2010). The glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 has broad substrate specificity: Physiological and toxicological considerations. J Steroid Biochem Mol Biol 119:1–13.
  • Ohara H, Miyabe Y, Deyashiki Y, Matsuura K, Hara A. (1995). Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase of human liver. Biochem Pharmacol 50:221–227.
  • Rosemond MJ, Walsh JS. (2004). Human carbonyl reduction pathways and a strategy for their study in vitro. Drug Metab Rev 36:335–361.
  • Rostami-Hodjegan A, Tucker GT. (2007). Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov 6:140–148.
  • Sambrook J, MacCallum P. (2001). Molecular cloning: A laboratory manual. 3rd edition. New York: CSH Press.
  • Skarydová L, Skarka A, Solich P, Wsól V. (2010). Enzyme stereospecificity as a powerful tool in searching for new enzymes. Curr Drug Metab 11:547–559.
  • Steckelbroeck S, Oyesanmi B, Jin Y, Lee SH, Kloosterboer HJ, Penning TM. (2006). Tibolone metabolism in human liver is catalyzed by 3α/3β-hydroxysteroid dehydrogenase activities of the four isoforms of the aldo-keto reductase (AKR)1C subfamily. J Pharmacol Exp Ther 316:1300–1309.
  • Turpeinen M, Hofmann U, Klein K, Mürdter T, Schwab M, Zanger UM. (2009). A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes. Drug Metab Dispos 37:1017–1024.
  • Wsól V, Szotáková B, Skálová L, Cepková H, Kvasnicková E. (2000). The main metabolic pathway of oracin, a new potential cytostatic drug, in human liver microsomes and cytosol: stereoselectivity of reoxidation of the principal metabolite 11-dihydrooracin to oracin. Enantiomer 5:263–270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.