254
Views
53
CrossRef citations to date
0
Altmetric
Research Article

Biochemical alterations induced by acute oral doses of iron oxide nanoparticles in Wistar rats

, , , , , & show all
Pages 296-305 | Received 12 Oct 2011, Accepted 07 Aug 2012, Published online: 01 Oct 2012

References

  • Ammar, E. S., Said, S. A., Suddek, G. M., El-Damarawy, S. L. (2011). Amelioration of doxorubicin-induced cardiotoxicity by deferiprone in rats. Can J Physiol Pharmacol 89:269–276.
  • Benarroch, E. E. (2011). Na+, K+-ATPase: functions in the nervous system and involvement in neurologic disease. Neurology 76:287–293.
  • Boyer, P. D., Chance, B., Ernester, L., Mitchell, P., Racker, R., Slater, E. C. (1977). Oxidative phosphorylation and photophosphorylation. Annu Rev Biochem 46:955–1026.
  • Chambers, H. W., Chambers, J. E. (1989). An investigation of acetylcholinesterase inhibition and aging and choline acetyl transferase activity following a high level acute exposure to paraoxon. Pesticide Biochem Physiol 33:125–131.
  • Chen, J., Dong, X., Zhao, J., Tang, G. (2009). In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitoneal injection. J Appl Toxicol 29:330–337.
  • Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., et al. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120.
  • Cherukuri, P., Gannon, C. J., Leeuw, T. K., Schmidt, H. K., Smalley, R. E., Curley, S. A., et al. (2006). Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infraredfluorescence. Proc Natl Acad Sci U S A 103:18882–18886.
  • Clapham, D. E. (2007). Calcium signaling. Cell 131:1047–1058.
  • Colvin, V. L. (2003). The potential environmental impacts of engineered nanomaterials. Nat Biotechnol 21:1166–1170.
  • Dean, W. L. (2010). Role of platelet plasma membrane Ca-ATPase in health and disease. World J Biol Chem 1:265–270.
  • Descamps, L., Dehouck, M. P., Torpier, G., Cecchelli, R. (1996). Receptor-mediated transcytosis of transferrin through blood-brain barrier endothelial cells. Am J Physiol Heart Circ Physiol 270:H1149–H1158.
  • Ellman, G. L., Courtney, K. D., Anders, R. J. R., Featherstone, R. M. (1961). A new and rapid colometric determination of acetylcholinestrase activity. Biochem Pharmacol 7:88–95.
  • Federici, G., Shaw, B. J., Handy, R. D. (2007). Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicol 84:415–430.
  • Fidler, M. C., Walczyk, T., Davidsson, L., Zeder, C., Sakaguchi, N., Juneja, L. R., et al. (2004). A micronised, dispersible ferric pyrophosphate with high relative bioavailability in man. Br J Nutr 91:107–112.
  • Fiske, C. H., Subbarow, Y. (1925). The colorimetric determination of phosphorus. J Biol Chem 66:375–400.
  • Florence, A. T. (1997). The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res 14:259–266.
  • Griffitt, R. J., Feswick, A., Weil, R., Hyndman, K., Carpinone, P., Powers, K., et al. (2010). Investigation of acute nanoparticulate aluminum toxicity in zebrafish. Environ Toxicol 21:1–11.
  • Griffitt, R. J., Weil, R., Hyndman, K. A., Denslow, N. D., Powers, K., Taylor, D., et al. (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebra fish (Danio rerio). Environ Sci Technol 41:8178–8186.
  • Hahn, P. F., Stark, D. D., Lewis, J. M., Saini, S., Elizondo, G., Weissleder, R., et al. (1990). First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging. Radiology 175:695–700.
  • Hilty, F. M., Arnold, M., Hilbe, M., Teleki, A., Knijnenburg, J. T. N., Ehrensperger, F., et al. (2010). Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nat Nanotechnol 5:374–380.
  • Hoet, P. H., Brüske-Hohlfeld, I., Salata, O. V. (2004). Nanoparticles—known and unknown health risks. J Nanobiotechnol 2:12.
  • Hu, R., Gong, X., Duan, Y., Li, N., Che, Y., Cui, Y., et al. (2010). Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials 31:8043–8050.
  • Ito, A., Shinkai, M., Honda, H., Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11.
  • Jain, T. K., Reddy, M. K., Morales, M. A., Leslie-Pelecky, D. L., Labhasetwar, V. (2008). Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5:316–327.
  • Jinna, R. R., Uzodinma, J. E., Desaiah, D. (1989). Age-related changes in rat brain ATPases during treatment with chlordecone. J Toxicol Environ Health 27:199–208.
  • Kadar, E., Lowe, D. M., Solé, M., Fisher, A. S., Jha, A. N., Readman, J. W., et al. (2010). Uptake and biological responses to nano-Fe versus soluble FeCl3 in excised mussel gills. Anal Bioanal Chem 396:657–666.
  • Kaphlia, B. S., Khan, M. F., Ansari, G. A. S. (1992). Reduced activities of serum lactate dehydrogenase and aminotransferases due to an oral administration of 2-chloroethyl linoleatein rats. Bull Environ Contam Toxicol 48:308–312.
  • Kaplia, A. A., Morozova, V. S. (2010). Na+,K(+)-ATPase activity in polarized cells. Ukr Biokhim Zh 82:5–20.
  • Kaufman, C. L., Williams, M., Ryle, L. M., Smith, T. L., Tanner, M., Ho, C. (2003). Super paramagnetic iron oxide particles transactivator protein fluorescein isothiocyanate particle labeling for in vivo magnetic resonance imaging detection of cell migration: uptake and durability. Transplantation 76:1043–1046.
  • Kellerman, J. (1995). Blood test. Chicago, Illinois USA: Signet.
  • Kim, D. K., Zhang, Y., Voit, W., Kao, K. V., Kehr, J., Bjelke, B., et al. (2001). Superparamagnetic iron oxide nanoparticles for bio-medical application. Scripta Mater 44:1713–1717.
  • Koch, R. B. (1969). Fractionation of olfactory tissue homogenates: isolation of a concentrated plasma membrane fraction. J Neurochem 16:145–157.
  • LaConte, L., Nitin, N., Bao, G. (2005). Magnetic nanoparticle probes. Nanotoday 8:32–38.
  • Lewinski, N., Colvin, V., Drezek, R. (2008). Cytotoxicity of nanoparticles. Small 4:26–49.
  • Liu, H., Ma, L., Zhao, J., Liu, J., Yan, J., Ruan, J., et al. (2009). Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol Trace Elem Res 129:170–180.
  • Liu, Q., Shao, X., Chen, J., Shen, Y., Feng, C., Gao, X., et al. (2011). In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly (ethylene glycol)-poly (lactic acid) nanoparticles for intranasal delivery to the brain. Toxicol Appl Pharmacol 251:79–84.
  • Lomer, M. C., Thompson, R. P., Powell, J. J. (2002). Fine and ultrafine particles of the diet: influence on the mucosal immune response and associated with Crohn’s disease. Proc Nutr Soc 61:123–130.
  • Lowry, O. H., Rosenbhrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275.
  • Lux Report (2008). Nanomaterials state of the market: stealth success, broad impact. Available at:http://portal.luxresearchinc.com/research/document/3735:2008. Accessed 29 September 2011.
  • Ma, L., Liu, J., Li, N., Wang, J., Duan, Y., Yan, J., et al. (2010). Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials 31:99–105.
  • Magni, P., De Falco, G., Falugi, C., Franzoni, M., Monteverde, M., Perrone, E., et al. (2006). Genotoxicity biomarkers and acetylcholinesterase activity in natural populations of Mytilus galloprovincialis along a pollution gradient in the Gulf of Oristano (Sardinia, western Mediterranean). Environ Pollut 142:65–72.
  • Maiti, S. (2011). Nanotoxicity of gold and iron nanoparticles. J Biomed Nanotechnol 7:65.
  • Mata, A. M., Sepulveda, M. R. (2010). Plasma membrane Ca-ATPases in the nervous system during development and ageing. World J Biol Chem 1:229–234.
  • Maynard, A. D., Michelson, E. (2006). The nanotechnology consumer products inventory, Woodrow Wilson International Center for Scholars. Available at: <http:nanotechproject.org/44>. Accessed 29 May, 2007
  • McQueen, M. J. (1972). Optimal assay of LDH and α-HBD at 37°C. Ann Clin Biochem 9:21–25.
  • Medina, C., Santos-Martinez, M. J., Radomski, A., Corrigan, O. I., Radomski, M. W. (2007). Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558.
  • Moore, A., Grimm, J., Han, B., Santamaria, P. (2004). Tracking the recruitment of diabetogenic CD8(+) T cells to the pancreas in real time. Diabetes 53:1459–1466.
  • Morth, J. P., Pedersen, B. P., Buch-Pedersen, M. J., Andersen, J. P., Vilsen, B., Palmgren, M. G., et al. (2011). A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 12:60–70.
  • Nel, A., Xia, T., Madler, L., Li, N. (2006). Toxic potential of materials at the nano level. Science 311:622–627.
  • Oberdorster, G. (2010). Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105.
  • Oberdorster, G., Oberdorster, E., Oberdorster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839.
  • Organization for Economic Cooperation and Development. (2001). Guidelines for the testing of chemicals. Test guidelines 420. Acute oral toxicity—fixed dose procedure. Paris: OECD.
  • Pankhurst, Q. A., Connolly, J., Jones, S. K., Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181.
  • Pardini, R. S., Heidken, J. C., Baker, T. A., Payme, B. (1980). Toxicology of various pesticides and their decomposition products on mitochondrial electron transport. Arch Environ Contam Toxicol 9:87–97.
  • Patil, G., Khan, M. I., Akhtar, M. J., Ashquin, M., Sultana, S., Ahmad, I. (2011). Nanotoxicity of dolomite mineral of commercial importance in India. J Biomed Nanotechnol 7:114–115.
  • Patlolla, A., McGinnis, B., Tchounwou, P. (2011). Biochemical and histopathological evaluation of functionalized single-walled carbon nanotubes in Swiss–Webster mice. J Appl Toxicol 31:75–83.
  • Ramsden, C. S., Smith, T. J., Shaw, B. J., Handy, R. D. (2009). Dietary exposure to titanium dioxide nanoparticles in rainbow trout (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18:939–951.
  • Rohner, F, Ernst, FO, Arnold, M, Hilbe, M, Biebinger, R, Ehrensperger, F, Pratsinis, SE, et al. (2007). Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. J Nutr 137:614–619.
  • Schrand, A. M., Rahman, M. F., Hussain, S. M., Schlager, J. J., Smith, D. A., Ali, S. F. (2010). Metal based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:544–568.
  • Singh, N., Manshian, B., Jenkins, G. J., Griffiths, S. M., Williams, P. M., Maffeis, T. G., et al. (2009). NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914.
  • Slotkin, T. A., Salveggio, M., Lan, C., Kirkseyy, D. F. (1978). 3H-dopamine uptake by synaptic storage vesicles of rat whole brain regions. Life Sci 22:823–830.
  • Taguchi, R., Ikezawa, H. (1987). Properties of bovine erythrocyte acetylcholinesterase solubilized by phosphatidylinositol-specific phospholipase C1. J Biochem 102:803–811.
  • Unnithan, J., Rehman, M. U., Ahmad, F. J., Samim, M. (2011). Concentration dependent toxicity of 20 nm anatase titanium dioxide nanoparticles—an in vivo study on Wistar rats. J Biomed Nanotechnol 7:207–208.
  • Varley, H., Gowenlock, A. H., Bell, M. (1980). General topics and commoner tests. In: Practical clinical biochemistry, 5th ed., vol. 1 (pp. 714–726). London: William Heineman Medicals.
  • Volkheimer, G. (1974). Passage of particles through the wall of gastrointestinal tract. Environ Health Perspect 9:215–225.
  • Wang, B., Feng, W. Y., Wang, T. C., Jia, G., Wang, M., Shi, J. W., et al. (2006). Acute toxicity of nano and micro scale zinc powder in healthy adult mice. Toxicol Lett 161:115–123.
  • Wang, J., Chen, Y., Chen, B., Ding, J., Xia, G., Gao, C., et al. (2010). Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. Int J Nanomed 5:861–866.
  • Wang, Z., Zhao, J., Li, F., Gao, D., Xing, B. (2009). Adsorption and inhibition of acetylcholinetrase by different nanoparticles. Chemosphere 77:67–73.
  • Yang, S. T., Guo, W., Lin, Y., Deng, X. Y., Wang, H. F., Sun, H. F., et al. (2007). Biodistribution of pristine single-walled carbon nanotubes in vivo. J Phys Chem C 111:17761–17764.
  • Yang, S. T., Wang, X., Jia, G., Gu, Y., Wang, T., Nie, H., et al. (2008). Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett 181:182–189.
  • Yatzidis, S. H. (1960). Measurement of transaminases in serum. Nature 186:79–80.
  • Yu, K. O., Grabinski, C. M., Schrand, A. M., Murdock, R. C., Wang, W., Gu, B., et al. (2009). Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res 11:15–24.
  • Zimmerman, H. J., Seeff, L. B. (1970). Enzymes in hepatic disease. In: Goodly, E. L. (Ed.), Diagnostic enzymology (pp. 1–38). Philadelphia, Pennsylvania, USA: Lea & Febiger.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.