609
Views
64
CrossRef citations to date
0
Altmetric
Research Article

Characterization of an mGluR2/3 Negative Allosteric Modulator in Rodent Models of Depression

, , , , , , , , , , , , & show all
Pages 152-166 | Received 29 Aug 2011, Accepted 23 Sep 2011, Published online: 17 Nov 2011

REFERENCES

  • Ballard, T. M., Gatti Mcarthur, S., Goetschi, E., Wichmann, J., & Woltering, T. J. (2005). Patent No. WO 2005/014002. F. Hoffmann-La Roche AG.
  • Battaglia, G., Molinaro, G., Riozzi, B., Storto, M., Busceti, C. L., Spinsanti, P., Bucci, D., Di, L. V., Mudo, G., Corti, C., Corsi, M., Nicoletti, F., Belluardo, N., & Bruno, V. (2009). Activation of mGlu3 receptors stimulates the production of GDNF in striatal neurons. PLoS ONE, 4, e6591.
  • Bespalov, A. Y., van Gaalen, M. M., Sukhotina, I. A., Wicke, K., Mezler, M., Schoemaker, H., & Gross, G. (2008). Behavioral characterization of the mGlu group II/III receptor antagonist, LY-341495, in animal models of anxiety and depression. Eur J Pharmacol, 592, 96–102.
  • Caraci, F., Molinaro, G., Battaglia, G., Giuffrida, M. L., Riozzi, B., Traficante, A., Bruno, V., Cannella, M., Merlo, S., Wang, X., Heinz, B. A., Nisenbaum, E. S., Britton, T. C., Drago, F., Sortino, M. A., Copani, A., & Nicoletti, F. (2011). Targeting group ii metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with alzheimer’s disease: Selective activation of mglu2 receptors amplifies β-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective. Mol Pharmacol, 79, 618–626.
  • Cartmell, J., & Schoepp, D. D. (2000). Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem, 75, 889–907.
  • Chaki, S., Yoshikawa, R., Hirota, S., Shimazaki, T., Maeda, M., Kawashima, N., Yoshimizu, T., Yasuhara, A., Sakagami, K., Okuyama, S., Nakanishi, S., & Nakazato, A. (2004). MGS0039: A potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity. Neuropharmacology, 46, 457–467.
  • Chan, W. Y., McKinzie, D. L., Bose, S., Mitchell, S. N., Witkin, J. M., Thompson, R. C., Christopoulos, A., Lazareno, S., Birdsall, N. J., Bymaster, F. P., & Felder, C. C. (2008). Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci U S A, 105, 10978–10983.
  • Christopoulos, A., & Kenakin, T. (2002). G Protein-coupled receptor allosterism and complexing. Pharmacol Rev, 54, 323–374.
  • Ciccarelli, R., D’Alimonte, I., Ballerini, P., D’Auro, M., Nargi, E., Buccella, S., Di, I. P., Bruno, V., Nicoletti, F., & Caciagli, F. (2007). Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes. Mol Pharmacol, 71, 1369–1380.
  • Clinton, S. M., Haroutunian, V., Davis, K. L., & Meador-Woodruff, J. H. (2003). Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry, 160, 1100–1109.
  • Conn, P. J., Christopoulos, A., & Lindsley, C. W. (2009). Allosteric modulators of GPCRs: A novel approach for the treatment of CNS disorders. Nat Rev Drug Discov, 8, 41–54.
  • Danysz, W., Zajaczkowski, W., & Parsons, C. G. (1995). Modulation of learning processes by ionotropic glutamate receptor ligands. Behav Pharmacol, 6, 455–474.
  • Ehlert, F. J. (2005). Analysis of allosterism in functional assays. J Pharmacol Exp Ther, 315, 740–754.
  • El Yacoubi, M., Bouali, S., Popa, D., Naudon, L., Leroux-Nicollet, I., Hamon, M., Costentin, J., Adrien, J., & Vaugeois, J. M. (2003). Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. Proc Natl Acad Sci U S A, 100, 6227–6232.
  • Feyissa, A. M., Woolverton, W. L., Miguel-Hidalgo, J. J., Wang, Z., Kyle, P. B., Hasler, G., Stockmeier, C. A., Iyo, A. H., & Karolewicz, B. (2010). Elevated level of metabotropic glutamate receptor 2/3 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry, 34, 279–283.
  • Hashimoto, K. (2009). Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res Rev, 61, 105–123.
  • Higgins, G. A., Ballard, T. M., Kew, J. N., Richards, J. G., Kemp, J. A., Adam, G., Woltering, T., Nakanishi, S., & Mutel, V. (2004). Pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent. Neuropharmacology, 46, 907–917.
  • Johnson, B. G., Wright, R. A., Arnold, M. B., Wheeler, W. J., Ornstein, P. L., & Schoepp, D. D. (1999). [3H]-LY341495 as a novel antagonist radioligand for group II metabotropic glutamate (mGlu) receptors: Characterization of binding to membranes of mGlu receptor subtype expressing cells. Neuropharmacology, 38, 1519–1529.
  • Kalinichev, M., Bate, S. T., Coggon, S. A., & Jones, D. N. (2008). Locomotor reactivity to a novel environment and sensitivity to MK-801 in five strains of mice. Behav Pharmacol, 19, 71–75.
  • Kalinichev, M., Campo, B., Lambeng, N., Célanire, S., Schneider, M., Bessif, A., Royer-Urios, I., Parron, D., Legrand, C., Mahious, N., Girard, F., & Le Poul, E. (2010). AN mGluR2/3 negative allosteric modulator improves recognition memory assessedby natural forgetting in the novel object recognition test in rats.
  • Karasawa, J., Shimazaki, T., Kawashima, N., & Chaki, S. (2005). AMPA receptor stimulation mediates the antidepressant-like effect of a group II metabotropic glutamate receptor antagonist. Brain Res, 1042, 92–98.
  • Kawashima, N., Karasawa, J., Shimazaki, T., Chaki, S., Okuyama, S., Yasuhara, A., & Nakazato, A. (2005). Neuropharmacological profiles of antagonists of group II metabotropic glutamate receptors. Neurosci Lett, 378, 131–134.
  • Kenakin, T. (2004). Allosteric modulators: The new generation of receptor antagonist. Mol Interv, 4, 222–229.
  • Kenakin, T. (2005). New concepts in drug discovery: Collateral efficacy and permissive antagonism. Nat Rev Drug Discov, 4, 919–927.
  • Kenakin, T. (2007). Collateral efficacy in drug discovery: Taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol Sci, 28, 407–415.
  • Kew, J. N. (2004). Positive and negative allosteric modulation of metabotropic glutamate receptors: Emerging therapeutic potential. Pharmacol Ther, 104, 233–244.
  • Kim, S. H., Fraser, P. E., Westaway, D., St George-Hyslop, P. H., Ehrlich, M. E., & Gandy, S. (2010). Group II metabotropic glutamate receptor stimulation triggers production and release of Alzheimer’s amyloid(beta)42 from isolated intact nerve terminals. J Neurosci, 30, 3870–3875.
  • Kingston, A. E., Ornstein, P. L., Wright, R. A., Johnson, B. G., Mayne, N. G., Burnett, J. P., Belagaje, R., Wu, S., & Schoepp, D. D. (1998). LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology, 37, 1–12.
  • Knoflach, F., Ballard, T., Goetschi, E., Wichmann, J., Woltering, T., & Gatti, S. (2005). R1315, a potent orally active non-competitive group II metabotropic glutamate receptor antagonist with cognitive enhancing properties.
  • Lambeng, N., Campo, B., Kalinichev, M., Célanire, S., Tang, L., Da Silva, J., Fonteny, F., Gagliardi, S., Rencurosi, A., Schneider, M., Royer-Urios, I., Mingard, B., Pastor, F., Girard, F., Bessif, A., Legrand, C., & Le Poul, E. (2010). Selective mGluR2 negative allosteric modulators reverse the scopolamine-induced memory deficit in the novel object recognition test.
  • Lazareno, S., & Birdsall, N. J. (1995). Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: Interactions of strychnine and acetylcholine at muscarinic receptors. Mol Pharmacol, 48, 362–378.
  • May, L. T., Leach, K., Sexton, P. M., & Christopoulos, A. (2007). Allosteric modulation of G protein-coupled receptors. Annu Rev Pharmacol Toxicol, 47, 1–51.
  • McCullumsmith, R. E., & Meador-Woodruff, J. H. (2002). Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology, 26, 368–375.
  • Monn, J. A., Valli, M. J., Massey, S. M., Hansen, M. M., Kress, T. J., Wepsiec, J. P., Harkness, A. R., Grutsch, J. L., ., JrWright, R. A., Johnson, B. G., Andis, S. L., Kingston, A., Tomlinson, R., Lewis, R., Griffey, K. R., Tizzano, J. P., & Schoepp, D. D. (1999). Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylic acid (LY354740): Identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J Med Chem, 42, 1027–1040.
  • Murakami, H., Takanaga, H., Matsuo, H., Ohtani, H., & Sawada, Y. (2000). Comparison of blood-brain barrier permeability in mice and rats using in situ brain perfusion technique. Am J Physiol Heart Circ Physiol, 279, H1022–H1028.
  • Nakanishi, S., Nakajima, Y., Masu, M., Ueda, Y., Nakahara, K., Watanabe, D., Yamaguchi, S., Kawabata, S., & Okada, M. (1998). Glutamate receptors: Brain function and signal transduction. Brain Res Brain Res Rev, 26, 230–235.
  • Nestler, E. J., Barrot, M., Dileone, R. J., Eisch, A. J., Gold, S. J., & Monteggia, L. M. (2002). Neurobiology of depression. Neuron, 34, 13–25.
  • Niswender, C. M., Johnson, K. A., Miller, N. R., Ayala, J. E., Luo, Q., Williams, R., Saleh, S., Orton, D., Weaver, C. D., & Conn, P. J. (2010). Context-dependent pharmacology exhibited by negative allosteric modulators of metabotropic glutamate receptor 7. Mol Pharmacol, 77, 459–468.
  • Ornstein, P. L., Bleisch, T. J., Arnold, M. B., Wright, R. A., Johnson, B. G., & Schoepp, D. D. (1998). 2-Substituted (2SR)-2-amino-2-((1SR,2SR)-2-carboxycycloprop-1-yl)glycines as potent and selective antagonists of group II metabotropic glutamate receptors. 1. Effects of alkyl, arylalkyl, and diarylalkyl substitution. J Med Chem, 41, 346–357.
  • Palucha, A., & Pilc, A. (2005). The involvement of glutamate in the pathophysiology of depression. Drug News Perspect, 18, 262–268.
  • Paul, I. A., & Skolnick, P. (2003). Glutamate and depression: Clinical and preclinical studies. Ann N Y Acad Sci, 1003, 250–272.
  • Petrie, R. X., Reid, I. C., & Stewart, C. A. (2000). The N-methyl-d-aspartate receptor, synaptic plasticity, and depressive disorder. A critical review. Pharmacol Ther, 87, 11–25.
  • Popa, D., El, Y. M., Vaugeois, J. M., Hamon, M., & Adrien, J. (2006). Homeostatic regulation of sleep in a genetic model of depression in the mouse: Effects of muscarinic and 5-HT1A receptor activation. Neuropsychopharmacology, 31, 1637–1646.
  • Rosenberg, D. R., MacMaster, F. P., Keshavan, M. S., Fitzgerald, K. D., Stewart, C. M., & Moore, G. J. (2000). Decrease in caudate glutamatergic concentrations in pediatric obsessive-compulsive disorder patients taking paroxetine. J Am Acad Child Adolesc Psychiatry, 39, 1096–1103.
  • Schechter, L. E., Ring, R. H., Beyer, C. E., Hughes, Z. A., Khawaja, X., Malberg, J. E., & Rosenzweig-Lipson, S. (2005). Innovative approaches for the development of antidepressant drugs: Current and future strategies. NeuroRx, 2, 590–611.
  • Schoepp, D. D., Jane, D. E., & Monn, J. A. (1999). Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology, 38, 1431–1476.
  • Shimazaki, T., Kaku, A., & Chaki, S. (2007). Blockade of the metabotropic glutamate 2/3 receptors enhances social memory via the AMPA receptor in rats. Eur J Pharmacol, 575, 94–97.
  • Skolnick, P., Popik, P., & Trullas, R. (2009). Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci, 30, 563–569.
  • Spinelli, S., Ballard, T., Gatti-McArthur, S., Richards, G. J., Kapps, M., Woltering, T., Wichmann, J., Stadler, H., Feldon, J., & Pryce, C. R. (2005). Effects of the mGluR2/3 agonist LY354740 on computerized tasks of attention and working memory in marmoset monkeys. Psychopharmacology, 179, 292–302.
  • Spooren, W. P., Gasparini, F., Van der, P. H., Koller, M., Nakanishi, S., & Kuhn, R. (2000). Lack of effect of LY314582 (a group 2 metabotropic glutamate receptor agonist) on phencyclidine-induced locomotor activity in metabotropic glutamate receptor 2 knockout mice. Eur J Pharmacol, 397, R1-R2.
  • Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: Review and meta-analysis. Am J Psychiatry, 157, 1552–1562.
  • Taylor, D. L., Diemel, L. T., & Pocock, J. M. (2003). Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J Neurosci, 23, 2150–2160.
  • Turri, M. G., Datta, S. R., DeFries, J., Henderson, N. D., & Flint, J. (2001). QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Curr Biol, 11, 725–734.
  • Woltering, T. J., Wichmann, J., Goetschi, E., Knoflach, F., Ballard, T. M., Huwyler, J., & Gatti, S. (2010). Synthesis and characterization of 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives: Part 4. In vivo active potent and selective non-competitive metabotropic glutamate receptor 2/3 antagonists. Bioorg Med Chem Lett, 20, 6969–6974.
  • Woolley, M. L., Pemberton, D. J., Bate, S., Corti, C., & Jones, D. N. (2008). The mGlu2 but not the mGlu3 receptor mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity. Psychopharmacology, 196, 431–440.
  • Wright, R. A., Arnold, M. B., Wheeler, W. J., Ornstein, P. L., & Schoepp, D. D. (2000). Binding of [3H](2S,1’S,2’S)-2-(9-xanthylmethyl)-2-(2’-carboxycyclopropyl) glycine ([3H]LY341495) to cell membranes expressing recombinant human group III metabotropic glutamate receptor subtypes. Naunyn-Schmiedeberg Arch Pharmacol, 362, 546–554.
  • Wright, R. A., Arnold, M. B., Wheeler, W. J., Ornstein, P. L., & Schoepp, D. D. (2001). [3H]LY341495 binding to group II metabotropic glutamate receptors in rat brain. J Pharmacol Exp Ther, 298, 453–460.
  • Yoshikawa, T., Watanabe, A., Ishitsuka, Y., Nakaya, A., & Nakatani, N. (2002). Identification of multiple genetic loci linked to the propensity for “behavioral despair” in mice. Genome Res, 12, 357–366.
  • Yoshimizu, T., Shimazaki, T., Ito, A., & Chaki, S. (2006). An mGluR2/3 antagonist, MGS0039, exerts antidepressant and anxiolytic effects in behavioral models in rats. Psychopharmacology, 186, 587–593.
  • Zwienenberg, M., Gong, Q. Z., Berman, R. F., Muizelaar, J. P., & Lyeth, B. G. (2001). The effect of groups II and III metabotropic glutamate receptor activation on neuronal injury in a rodent model of traumatic brain injury. Neurosurgery, 48, 1119–1126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.