327
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Starvation-Induced Elevation of Taste Responsiveness and Expression of a Sugar Taste Receptor Gene in Drosophila melanogaster

, , , , , , & show all
Pages 206-215 | Received 29 Jan 2012, Accepted 15 May 2012, Published online: 13 Jul 2012

REFERENCES

  • Amakawa, T. (2001).Effec of age and blood sugar levels on the proboscis extension of the blow fly Phormia regina. J Insect Physiol, 47, 195–203.
  • Anderson, G. H. (1995). Sugars, sweetness, and food intake. Am J Clin Nutr, 62, 195S-202S.
  • Bharathi, N. S., Prasad, N. G., Shakarad, M., & Joshi, A. (2003). Variation in adult life history and stress resistance across five species of Drosophila. J Genet, 82, 191–202.
  • Carvalho, G. B., Kapahi, P., & Benzer, S. (2005). Compensatory ingestion upon dietary restriction in Drosophila melanogaster. Nat Methods, 2, 813–815.
  • Chang, Y. Y, Juhász, G., Goraksha-Hicks, P., Arsham, A. M., Mallin, D. R., Muller, L. K., & Neufeld, T. P. (2009). Nutrient-dependent regulation of autophagy through the target of rapamycin pathway. Biochem Soc Trans, 37, 232–236.
  • Chyb, S., Dahanukar, A., Wickens, A., & Carlson, J. R. (2003). Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc Natl Acad Sci USA, 100, 14526–14530.
  • Colombani, J., Raisin S., Pantalacci S., Radimersk, T., Montagne J., & Léopold, P. (2003). A nutrient sensor mechanism controls Drosophila growth. Cell, 114, 739–749.
  • Dahanukar, A., Foster, K., van der Goes van Naters, W. M., & Carlson. J. R. (2001). A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci, 4, 1182–1186.
  • Dahanukar, A., Lei, Y. T., Kwon, J. Y, & Carlson, J. R., (2007). Two Gr genes underlie sugar reception in Drosophila. Neuron, 56, 503–516.
  • Dethier, V. G., (1976). The hungry fly: A physiological study of the behavior associated with feeding. Cambridge, MA: Harvard University Press.
  • Edgecomb, R. S., Harth, C. E., & Schneiderman A. M. (1994). Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J Exp Biol, 197, 215–235.
  • Enell, L. E., Kapan, N., Jeannette, A. E., Söderberg, J. A. E., Kahsai, L., & Nässel, D. R. (2010). Insulin signaling, lifespan and stress resistance are modulated by metabotropic GABA receptors on insulin producing cells in the brain of Drosophila. PLoS ONE, 5, e15780.
  • Fujikawa, K., Takahashi, A., Nishimura, A., Itoh, M., Takano-Shimizu, T., & Ozaki, M. (2009). Characteristics of genes up-regulated and down-regulated after 24 h starvation in the head of Drosophila. Gene, 446, 11–17.
  • Fujishiro, N., Kijima, H., & Morita, H. (1984). Impulse frequency and action potential amplitude in labellar chemosensory neurons of Drosophila melanogaster. J Insect Physiol, 30, 317–325.
  • Gordesky-Gold, B., Rivers, N., Ahmed, O. M., & Breslin, P. A. S. (2008). Drosophila melanogaster prefers compounds perceived sweet by humans. Chem Senses, 33, 301–309.
  • Gordon, M. D., & Scott, K. (2009). Motor control in a Drosophila taste circuit. Neuron, 61, 373–384.
  • Grönke, S., Mildner, A., Fellert, S., Tennagels, N., Petry, S., Muller, G., Jackle, H., & Kühnlein, R. P. (2005). Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab, 1, 323–330.
  • Hao, X., Zhang, S., Timakov, B., & Zhang, P. (2007). The Hsp27 gene is not required for Drosophila development but its activity is associated with starvation resistance. Cell Stress Chaperones, 12, 364–372.
  • Harbison, S. T., Chang, S., Kamdar, K. P., & Mackay, T. F. C. (2005). Quantitative genomics of starvation stress resistance in Drosophila. Gen Biol, 6, R36.
  • Haselton, A., Sharmin, E., Schrader, J., Sah, M., Poon, P., & Fridell, Y.-W. C. (2010). Partial ablation of adult Drosophila insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resistance. Cell Cycle, 9, 3063–3071.
  • Hiroi, M., Marion-Poll, F., & Tanimura, T. (2002). Differentiated response to sugars among labellar chemosensilla in Drosophila. Zool Sci, 19, 1009–1018.
  • Hoffmann, A. A., Hallas, R., Sinclair, C., & Mitrovski, P. (2001). Levels of variation in stress resistance in Drosophila among strains, local populations, and geographic regions: Patterns for desiccation, starvation, cold resistance, and associated traits. Evolution, 55, 1621–1630.
  • Ishida, Y., & Ozaki, M. (2012). Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina. Naturwissenschaften, 99, 71–75.
  • Ishimoto, H., & Tanimura, T. (2004). Molecular neurophysiology of taste in Drosophila. Cell Mol Life Sci, 61, 10–18.
  • Jiao, Y., Moon, S. J., & Montell, C. (2007). A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc Natl Acad Sci USA, 104, 14110–14115.
  • Jiao, Y., Moon, S. J., Wang, X., Ren, Q., & Montell, C. (2008). Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr Biol, 18, 1797–1801.
  • Kahsai, L., Kapan, N., Dircksen, H., Winther, Å. M. E., Dick, R., & Nässel, D. R. (2010). Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides. PLoS ONE, 5, e11480.
  • Kent, L. B., & Robertson, H. M. (2009). Evolution of the sugar receptors in insects. BMC Evol Biol, 9, 41.
  • Kohyama-Koganeya, A., Kim. Y.-J., Miura, M., & Hirabayashi, Y. (2008). A Drosophila orphan G protein-coupled receptor BOSS functions as a glucose-responding receptor: Loss of boss causes abnormal energy metabolism. Proc Natl Acad Sci USA, 105, 15328–15333.
  • Lee, G., & Park, J. H. (2004). Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics, 167, 311–323.
  • Mattaliano, M. D., Montana, E. S., Parisky, K. M., Littleton. J. T., & Griffith, L. C. (2007). The Drosophila ARC homolog regulates behavioral responses to starvation. Mol Cell Neurosci, 36, 211–221.
  • Miyazaki, T., & Ito, K. (2010). Neural architecture of the primary gustatory center of Drosophila melanogaster visualized with GAL4 and LexA enhancer-trap systems. J Comp Neurol, 518, 4147–4181.
  • Morita, H. (1992). Transduction process and impulse initiation in insect contact chemoreceptor. Zool Sci, 9, 1–16.
  • Ninomiya, M., Ozaki, M., Kashihara, Y., & Morita, H. (1986). Destruction and reorganization of the receptor membrane in labellar chemosensory cells of the blowfly. Recovery of responses to sugar after destruction. J Gen Physiol, 87, 1003–1016.
  • Nisimura, T., Seto, A., Nakamura, K., Miyama, M., Nagao, T., Tamotsu, S., Yamaoka, R., & Ozaki, M. (2005). Experiential effects of appetitive and nonappetitive odors on feeding behavior in the blowfly, Phormia regina: A putative role for tyramine in appetite regulation. J Neurosci, 25, 7507–7516.
  • Okamura, T., Shimizu, H., Nagao, T., Ueda, R., & Ishii, S. (2007). ATF-2 regulates fat metabolism in Drosophila. Mol Biol Cell, 18, 1519–1529.
  • Ozaki, M., & Tominaga, Y. (2000). Contact chemoreceptors. In Eguchi E. & Tominaga Y. (Eds.), Atlas of Arthropod sensory receptors .(pp. 143–154). Tokyo: Springer-Verlag.
  • Robertson, H. M., Warr, C. G., & Carlson, J. R. (2003). Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci USA, 100, 14537–14542.
  • Scott, R. C., Schuldiner, O., & Neufeld, T. P. (2004). Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell, 7, 167–178.
  • Slone, J., Daniels, J., & Amrein, H. (2007). Sugar receptors in Drosophila. Curr Biol, 17, 1809–1816.
  • Stocker, R. F. (1994). The organization of the chemosensory system in Drosophila melanogaster: A review. Cell Tissue Res, 275, 3–26.
  • Syed, Z., Ishida, Y., Taylor, K., Kimbrell, D. A., & Leal, W. S. (2006). Pheromone reception in fruit flies expressing a moth's odorant receptor. Proc Natl Acad Sci USA, 103, 16538–16543.
  • Takahashi, A., Fujiwara-Tsujii, N., Yamaoka, R., Itoh, M., Ozaki, M., & Takano-Shimizu, T. (2012). Cuticular hydrocarbon content that affects male mate preference of Drosophila melanogaster from West Africa. Int J Ent Biol, 2012, 278903.
  • Takahashi, A., & Takano-Shimizu, T. (2007). A high-frequency null mutant of an odorant-binding protein gene, Obp 57e, in Drosophila melanogaster. Genetics, 170, 709–718.
  • Takahashi, A., Takahashi, K., Ueda, R., & Takano-Shimizu, T. (2007). Natural variation of ebony gene controlling thoracic pigmentation in Drosophila melanogaster. Genetics, 177, 1233–1237.
  • Tanimura, T., Isono, K., Takamura, T., & Shimada, I. (1982). Genetic dimorphism in the taste sensitivity to trehalose in Drosophila melanogaster. J Comp Physiol, 147, 433–437.
  • Terashima, J., & Bownes, M. (2005). A microarray analysis of genes involved in relating egg production to nutritional intake in Drosophila melanogaster. Cell Death Diff, 12, 429–440.
  • Ueno, K., Ohta, M., Morita, H., Mikuni, Y., Nakajima, S., Yamamoto, K., & Isono, K. (2001). Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr Biol, 11, 1451–1455.
  • Vigne, P., & Frelin, C. (2010). Hypoxia modifies the feeding preferences ofDrosophila. Consequences for diet dependent hypoxic survival. BMC Physiol, 10, 8.
  • Wong, R., Piper, M. D. W., Wertheim, B., & Partridge, L. (2009). Quantification of food intake in Drosophila. PLoS ONE, 4, e6063.
  • Zhao, Y., Bretz1, C. A., Hawksworth, S. A., Hirsh, J., & Johnson, E. C. (2010). Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS ONE, 5, e9141.
  • Zinke, I., Schütz, C. S., Katzenberger, J. D., Bauer, M., & Pankratz, M. J. (2002). Nutrient control of gene expression in Drosophila: Microarray analysis of starvation and sugar-dependent response. EMBO J, 21, 6162–6173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.