304
Views
20
CrossRef citations to date
0
Altmetric
Review Article

From Sequence to Spike to Spark: Evo-devo-neuroethology of Electric Communication in Mormyrid Fishes

&
Pages 106-129 | Received 07 Apr 2013, Accepted 23 Apr 2013, Published online: 26 Jun 2013

REFERENCES

  • Albert, J. S., Zakon, H. H., Stoddard, P. K., Unguez, G. A., Holmberg-Albert, S. K. S., & Sussman, M. R. (2008). The case for sequencing the genome of the electric eel Electrophorus electricus. J Fish Biol, 72, 331–354.
  • Alcock, J., & Sherman, P. (1994). The utility of the proximate–ultimate dichotomy in ethology. Ethology, 96, 58–62.
  • Allender, C. J., Seehausen, O., Knight, M. E., Turner, G. F., & Maclean, N. (2003). Divergent selection during speciation of Lake Malawi cichlid fishes inferred from parallel radiations in nuptial coloration. Proc Natl Acad Sci U S A, 100, 13074–14079.
  • Alves-Gomes, J., & Hopkins, C. D. (1997). Molecular insights into the phylogeny of mormyriform fishes and the evolution of their electric organs. Brain Behav Evol, 49, 324–351.
  • Amagai, S. (1998). Time coding in the midbrain of mormyrid electric fish. II. Stimulus selectivity in the nucleus exterolateralis pars posterior. J Comp Physiol A, 182, 131–143.
  • Amagai, S., Friedman, M. A., & Hopkins, C. D. (1998). Time coding in the midbrain of mormyrid electric fish. I. Physiology and anatomy of cells in the nucleus exterolateralis pars anterior. J Comp Physiol A, 182, 115–130.
  • Arnegard, M. E., Bogdanowicz, S. M., & Hopkins, C. D. (2005). Multiple cases of striking genetic similarity between alternate electric fish signal morphs in symaptry. Evolution, 59, 324–343.
  • Arnegard, M. E., & Carlson, B. A. (2005). Electric organ discharge patterns during group hunting by a mormyrid fish. Proc R Soc B, 272, 1305–1314.
  • Arnegard, M. E., Jackson, B. S., & Hopkins, C. D. (2006). Time-domain signal divergence and discrimination without receptor modification in sympatric morphs of electric fishes. J Exp Biol, 209, 2182–2198.
  • Arnegard, M. E., McIntyre, P. B., Harmon, L. J., Zelditch, M. L., Crampton, W. G. R., Davis, J. K., Sullivan, J. P., Lavoué, S., & Hopkins, C. D. (2010a). Sexual signal evolution outpaces ecological divergence during electric fish species radiation. Am Nat, 176, 335–356.
  • Arnegard, M. E., Zwickl, D. J., Lu, Y., & Zakon, H. H. (2010b). Old gene duplication facilitates origin and diversification of an innovative communication system—Twice. Proc Natl Acad Sci U S A, 107, 22172–22177.
  • Ashida, G., & Carr, C. E. (2011). Sound localization: Jeffress and beyond. Curr Opin Neurobiol, 21, 745–751.
  • Baker, C. A., Kohashi, T., Lyons-Warren, A. M., Ma, X., & Carlson, B. A. (2013). Multiplexed temporal coding of electric communication signals in mormyrid fishes. J Exp Biol, 216, 2365–2379.
  • Baker, C. V. H., & Bonner-Fraser, M. (2001). Vertebrate cranial placodes. I. Embryonic induction. Dev Biol, 232, 1–61.
  • Bass, A. H. (1986a). Electric organs revisited: Evolution of a vertebrate communication and orientation organ. In T. H. Bullock & W. Heiligenberg (Eds.), Electroreception. (pp. 13–70). New York: John Wiley and Sons.
  • Bass, A. H. (1986b). A hormone-sensitive communication-system in an electric fish. J Neurobiol, 17, 131–155.
  • Bass, A. H., Denizot, J. P., & Marchaterre, M. A. (1986). Ultrastructural features and hormone-dependent sex-differences of mormyrid electric organs. J Comp Neurol, 254, 511–528.
  • Bass, A. H., & Hopkins, C. D. (1983). Hormonal control of sexual differentiation: Changes in electric organ discharge waveform. Science, 220, 971–974.
  • Bass, A. H., & Hopkins, C. D. (1984). Shifts in frequency tuning of electroreceptors in androgen-treated mormyrid fish. J Comp Physiol A, 155, 713–724.
  • Bass, A. H., & Hopkins, C. D. (1985). Hormonal control of sex differences in the electric organ discharge (EOD) of mormyrid fishes. J Comp Physiol A, 156, 587–604.
  • Bass, A. H., & Volman, S. F. (1987). From behavior to membranes: Testosterone-induced changes in action potential duration in electric organs. Proc Natl Acad Sci U S A, 84, 9295–9298.
  • Bell, C., & Maler, L. (2005). Central neuroanatomy of electrosensory systems in fish. In T. H. Bullock, C. D. Hopkins, A. Popper, & R. R. Fay (Eds.), Electroreception. (Vol. 21, pp. 68–111). New York: Springer.
  • Bell, C. C. (1989). Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol, 146, 229–253.
  • Bell, C. C. (1990). Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between 2 morphological types of fibers. J Neurophysiol, 63, 319–332.
  • Bell, C. C. (2001). Memory-based expectations in electrosensory systems. Curr Opin Neurobiol, 11, 481–487.
  • Bell, C. C., & Grant, K. (1989). Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish. J Neurosci, 9, 1029–1044.
  • Bell, C. C., Libouban, S., & Szabo, T. (1983). Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. J Comp Neurol, 216, 327–338.
  • Bell, C. C., Myers, J. P., & Russell, C. J. (1974). Electric organ discharge patterns during dominance related behavioral displays in Gnathonemus petersii (Mormyridae). J Comp Physiol, 92, 201–228.
  • Bell, C. C., & Russell, C. J. (1978). Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateral area. J Comp Neurol, 182, 367–382.
  • Bell, C. C., & Szabo, T. (1986). Electroreception in mormyrid fish: Central anatomy. In T. H. Bullock & W. Heiligenberg (Eds.), Electroreception. (pp. 375–421). New York: John Wiley & Sons.
  • Bennett, M. V. L. (1965). Electroreceptors in mormyrids. Cold Spring Harbor Symp Quant Biol, 30, 245–262.
  • Bennett, M. V. L. (1971). Electric organs. In W. S. Hoar & D. J. Randall (Eds.), Fish physiology. (Vol. 5, pp. 347–491). London: Academic Press.
  • Bennett, M. V. L., Aljure, E., Nakajima, Y., & Pappas, G. D. (1963). Electrotonic junctions between teleost spinal neurons: Electrophysiology and ultrastructure. Science, 141, 262–264.
  • Bennett, M. V. L., & Grundfest, H. (1961). Studies on the morphology and electrophysiology of electric organs. III. Electrophysiology of electric organs in mormyrids. In C. Chagas & A. Carvalho (Eds.), Bioelectrogenesis. (pp. 113–135). New York: Elsevier.
  • Bennett, M. V. L., Pappas, G., Aljure, E., & Nakajima, Y. (1967). Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. J Neurophysiol, 30, 180–208.
  • Bensouilah, M., Schugardt, C., Roesler, R., Kirschbaum, F., & Denizot, J. P. (2002). Larval electroreceptors in the epidermis of mormyrid fish. I. Tuberous organs of type A and B. J Comp Neurol, 447, 309–322.
  • Bever, M. M., & Borgens, R. B. (1991a). Patterning in the regeneration of electroreceptors in the fin of Kryptopterus. J Comp Neurol, 309, 218–230.
  • Bever, M. M., & Borgens, R. B. (1991b). The regeneration of electroreceptors in Kryptopterus. J Comp Neurol, 309, 200–217.
  • Bodznick, D., & Boord, R. L. (1986). Electroreception in chondrichthyes: Central anatomy and physiology. In T. H. Bullock & W. Heilgenberg (Eds.), Electroreception.New York: John Wiley & Sons (pp. 225–256.
  • Bodznick, D., & Montgomery, J. C. (2005). The physiology of low-frequency electrosensory systems. In T. H. Bullock, C. D. Hopkins, A. Popper, & R. R. Fay (Eds.), Electroreception. (Vol. 21, pp. 132–153). New York: Springer.
  • Boul, K. E., Chris Funk, W., Darst, C. R., Cannatella, D. C., & Ryan, M. J. (2006). Sexual selection drives speciation in an Amazonian frog. Proc R Soc B, 274, 399–406.
  • Bratton, B. O., & Kramer, B. (1989). Patterns of the electric organ discharge during courtship and spawning in the mormyrid fish, Pollimyrus isidori. Behav Ecol Sociobiol, 24, 349–368.
  • Bullock, T. H., Bodznick, D. A., & Northcutt, R. G. (1983). The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev, 6, 25–46.
  • Bustamante, C. D., Fledel-Alon, A., Williamson, S., Nielsen, R., Hubisz, M. T., Glanowski, S., Tanenbaum, D. M., White, T. J., Sninsky, J. J., Hernandez, R. D., et al. (2005). Natural selection on protein-coding genes in the human genome. Nature, 437, 1153–1157.
  • Caputi, A. A., Carlson, B. A., & Macadar, O. (2005). Electric organs and their control. In T. H. Bullock, C. D. Hopkins, A. Popper, & R. R. Fay (Eds.), Electroreception. (Vol. 21, pp. 410–451). New York: Springer.
  • Carlson, B. A. (2002a). Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish. J Physiol Paris, 96, 405–419.
  • Carlson, B. A. (2002b). Neuroanatomy of the mormyrid electromotor control system. J Comp Neurol, 454, 440–455.
  • Carlson, B. A. (2003). Single-unit activity patterns in nuclei that control the electromotor command nucleus during spontaneous electric signal production in the mormyrid Brienomyrus brachyistius. J Neurosci, 23, 10128–10136.
  • Carlson, B. A. (2006). A neuroethology of electrocommunication: Senders, receivers, and everything in between. In F. Ladich, S. P. Collin, P. Moller, & B. G. Kapoor (Eds.), Communication in fishes. (Vol. 2, pp. 805–848). Enfield, NH: Science Publishers.
  • Carlson, B. A. (2009). Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior. J Neurosci, 29, 9417–9428.
  • Carlson, B. A. (2012). Diversity matters: The Importance of comparative studies and the potential for synergy between neuroscience and evolutionary biology. Arch Neurol, 69, 987–993.
  • Carlson, B. A., & Arnegard, M. E. (2011). Neural innovations and the diversification of African weakly electric fishes. Commun Integ Biol, 4, 720–725.
  • Carlson, B. A., Hasan, S. M., Hollmann, M., Miller, D. B., Harmon, L. J., & Arnegard, M. E. (2011). Brain evolution triggers increased diversification of electric fishes. Science, 332, 583–586.
  • Carlson, B. A., & Hopkins, C. D. (2004a). Central control of electric signaling behavior in the mormyrid Brienomyrus brachyistius: Segregation of behavior-specific inputs and the role of modifiable recurrent inhibition. J Exp Biol, 207, 1073–1084.
  • Carlson, B. A., & Hopkins, C. D. (2004b). Stereotyped temporal patterns in electrical communication. Anim Behav, 68, 867–878.
  • Carlson, B. A., Hopkins, C. D., & Thomas, P. (2000). Androgen correlates of socially induced changes in the electric organ discharge waveform of a mormyrid fish. Horm Behav, 38, 177–186.
  • Carroll, S. B. (2000). Endless forms: The evolution of gene regulation and morphological diversity. Cell, 101, 577–580.
  • Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134, 25–36.
  • Cheng, C. H. C. (1998). Evolution of the diverse antifreeze proteins. Curr Opin Genet Dev, 8, 715–720.
  • Clark, A. G., Glanowski, S., Nielsen, R., Thomas, P. D., Kejariwal, A., Todd, M. A., Tanenbaum, D. M., Civello, D., Lu, F., Murphy, B., et al. (2003). Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science, 302, 1960–1963.
  • Cuellar, H., Kim, J. A., & Unguez, G. A. (2006). Evidence of post-transcriptional regulation in the maintenance of a partial muscle phenotype by electrogenic cells of S. macrurus. FASEB J, 20, 2540.
  • Dehal, P., & Boore, J. L. (2005). Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol, 3, 1700–1708.
  • Denizot, J.-P., Bensouilah, M., Roesler, R., Schugardt, C., & Kirschbaum, F. (2007). Larval electroreceptors in the epidermis of mormyrid fish. II. The promormyromast. J Comp Neurol, 501, 810–823.
  • Denizot, J. P., Kirschbaum, F., Schugardt, C., & Bensouilah, M. (1998). Larval electroreceptors indicate a larval electric system in mormyrids. Neurosci Lett, 241, 103–106.
  • Denizot, J. P., Kirschbaum, F., Westby, G. W. M., & Tsuji, S. (1978). The larval electric organ of the weakly electric fish Pollimyrus isidori (Mormyridae, Teleostei). J Neurocytol, 7, 165–182.
  • Denizot, J. P., Kirschbaum, F., Westby, G. W. M., & Tsuji, S. (1982). On the development of the adult electric organ in the mormyrid fish Pollimyrus isidori (with special focus on the innervation). J Neurocytol, 11, 913–934.
  • Denizot, J. P., & Libouban, S. (1985). New formation of sensory cells in the tuberous organ (Electroreceptor) of Brienomyrus niger (Mormyridae) induced by transection of afferent nerve. Int J Dev Neurosci, 3, 323–330.
  • Dewsbury, D. A. (1994). On the utility of the proximate-ultimate distinction in the study of animal behavior. Ethology, 96, 63–68.
  • Diamond, J. (1986). Biology of birds of paradise and bowerbirds. Annu Rev Ecol Syst, 17, 17–37.
  • Dobzhansky, T. (1937). Genetics and the origin of species. New York: Columbia University Press.
  • Dorus, S., Vallender, E. J., Evans, P. D., Anderson, J. R., Gilbert, S. L., Mahowald, M., Wyckoff, G. J., Malcom, C. M., & Lahn, B. T. (2004). Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell, 119, 1027–1040.
  • Duman, J. G. (2001). Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol, 63, 327–357.
  • Dunlap, K. D., McAnelly, M. L., & Zakon, H. H. (1997). Estrogen modifies an electrocommunication signal by altering the electrocyte sodium current in an electric fish, Sternopygus. J Neurosci, 17, 2869–2875.
  • Elekes, K., Ravaille, M., Bell, C. C., Libouban, S., & Szabo, T. (1985). The mormyrid brainstem. II. The medullary electromotor relay nucleus: An ultrastructural horseradish peroxidase study. Neuroscience, 15, 417–429.
  • Elekes, K., & Szabo, T. (1985). The mormyrid brainstem. III. Ultrastructure and synaptic organization of the medullary “pacemaker” nucleus. Neuroscience, 15, 431–443.
  • Eschmeyer, W. N., & Fricke, R. (2011). Catalog of fishes. San Francisco: California Academy of Sciences.
  • Ferrari, M. B., McAnelly, M. L., & Zakon, H. H. (1995). Individual variation in and androgen-modulation of the sodium current in electric organ. J Neurosci, 15, 4023–4032.
  • Ferrari, M. B., & Zakon, H. H. (1993). Conductances contributing to the action potential of Sternopygus electrocytes. J Comp Physiol A, 173, 281–292.
  • Feulner, P. G. D., Kirschbaum, F., Mamonekene, V., Ketmaier, V., & Tiedemann, R. (2007). Adaptive radiation in African weakly electric fish (Teleostei: Mormyridae: Campylomormyrus): A combined molecular and morphological approach. J Evol Biol, 20, 403–414.
  • Feulner, P. G. D., Kirschbaum, F., & Tiedemann, R. (2008). Adaptive radiation in the Congo River: An ecological speciation scenario for African weakly electric fish (Teleostei; Mormyridae; Campylomormyrus). J Physiol Paris, 102, 340–346.
  • Feulner, P. G. D., Plath, M., Engelmann, J., Kirschbaum, F., & Tiedemann, R. (2009a). Electrifying love: Electric fish use species-specific discharge for mate recognition. Biol Lett, 5, 225–228.
  • Feulner, P. G. D., Plath, M., Engelmann, J., Kirschbaum, F., & Tiedemann, R. (2009b). Magic trait electric organ discharge (EOD). Commun Integ Biol, 2, 329–331.
  • Finger, T. E. (1986). Electroreception in catfish: Behavior, anatomy, and electrophysiology. In T. H. Bullock & W. Heiligenberg (Eds.), Electroreception. (pp. 287–317). New York: John WIley & Sons.
  • Finger, T. E., Bell, C. C., & Carr, C. E. (1986). Behavior, anatomy, and electrophysiology: Why are electrosensory systems so similar? In T. H. Bullock & W. Heiligenberg (Eds.) , Electroreception. (pp. 465–481). New York: John Wiley & Sons.
  • Fletcher, G. L., Hew, C. L., & Davies, P. L. (2001). Antifreeze proteins of teleost fishes. Annu Rev Physiol, 63, 359–390.
  • Francis, R. C. (1990). Causes, proximate and ultimate. Biol Philos, 5, 401–415.
  • Freitas, R., Zhang, G., Albert, J. S., Evans, D. H., & Cohn, M. J. (2006). Developmental origin of shark electrosensory organs. Evol Devol, 8, 74–80.
  • Friedman, M. A., & Hopkins, C. D. (1996). Tracking individual mormyrid electric fish in the field using electric organ discharge waveforms. Anim Behav, 51, 391–407.
  • Friedman, M. A., & Hopkins, C. D. (1998). Neural substrates for species recognition in the time-coding electrosensory pathway of mormyrid electric fish. J Neurosci, 18, 1171–1185.
  • Gallant, J. R., Arnegard, M. E., Sullivan, J. P., Carlson, B. A., & Hopkins, C. D. (2011). Signal variation and its morphological correlates in Paramormyrops kingsleyae provide insight into the evolution of electrogenic signal diversity in mormyrid electric fish. J Comp Physiol A, 197, 799–817.
  • Gallant, J. R., Hopkins, C. D., & Deitcher, D. L. (2012). Differential expression of genes and proteins between electric organ and skeletal muscle in the mormyrid electric fish Brienomyrus brachyistius. J Exp Biol, 15, 2479–2494.
  • George, A. A., Lyons-Warren, A. M., Ma, X., & Carlson, B. A. (2011). A diversity of synaptic filters are created by temporal summation of excitation and inhibition. J Neurosci, 31, 14721–14734.
  • Ghysen, A., & Dambly-Chaudiére (2004). Development of the zebrafish lateral line. Curr Opin Neurobiol, 14, 67–73.
  • Gibbs, M. A., & Northcutt, R. G. (2004). Development of the lateral line system in the shovelnose sturgeon. Brain Behav Evol, 64, 70–84.
  • Gillis, J. A., Modrell, M. S., Northcutt, R. G., Catania, K. C., Luer, C. A., & Baker, C. V. H. (2012). Electrosensory ampullary organs are derived from lateral line placodes in cartilaginous fishes. Development, 139, 3142–3146.
  • Grant, K., Bell, C. C., Clausse, S., & Ravaille, M. (1986). Morphology and physiology of the brainstem nuclei controlling the electric organ discharge in mormyrid fish. J Comp Neurol, 245, 514–530.
  • Hall, B. K. (2000). Guest editorial: Evo-devo or devo-evo—Does it matter?Evol Dev, 2, 177–178.
  • Hanika, S., & Kramer, B. (1999). Electric organ discharges of mormyrid fish as a possible cue for predatory catfish. Naturwissenschaften, 86, 286–288.
  • Hanika, S., & Kramer, B. (2000). Electrosensory prey detection in the African sharptooth catfish, Clarias gariepinus (Clariidae), of a weakly electric mormyrid fish, the bulldog (Marcusenius macrolepidotus). Behav Ecol Sociobiol, 48, 218–228.
  • Harder, W. (1968a). Die Beziehungen zwischen elektrorezeptoren, elektrischem organ, seitenlinienorganen und nervensystem bei den Mormyridae (Teleostei, Pisces). Z Vergl Physiol, 59, 272–318.
  • Harder, W. (1968b). Zum aufbau der epidermalen sinnesorgane der Mormyridae (Mormyriformes, Teleostei). Z Zellforsch, 89, 212–224.
  • Heiligenberg, W. (1991). Neural nets in electric fish. Cambridge, MA: MIT Press.
  • Hinegardner, R., & Rosen, D. E. (1972). Cellular DNA content and the evolution of teleostean fishes. Am Nat, 106, 621–644.
  • Hoegg, S., Brinkmann, H., Taylor, J. S., & Meyer, A. (2004). Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol, 59, 190–203.
  • Hoekstra, H. E., & Coyne, J. A. (2007). The locus of evolution: Evo devo and the genetics of adaptation. Evolution, 61, 995–1016.
  • Hopkins, C. D. (1981). On the diversity of electric signals in a community of mormyrid electric fish in West Africa. Am Zool, 21, 211–222.
  • Hopkins, C. D. (1986a). Behavior of Mormyridae. In T. H. Bullock & W. Heiligenberg (Eds.), Electroreception (pp. 527–576). New York: John Wiley and Sons.
  • Hopkins, C. D. (1986b). Temporal structure of non-propagated electric communication signals. Brain Behav Evol, 28, 43–59.
  • Hopkins, C. D. (1995). Convergent designs for electrogenesis and electroreception. Curr Opin Neurobiol, 5, 769–777.
  • Hopkins, C. D. (1999). Design features for electric communication. J Exp Biol, 202, 1217–1228.
  • Hopkins, C. D., & Bass, A. H. (1981). Temporal coding of species recognition signals in an electric fish. Science, 212, 85–87.
  • Hopkins, C. D., Lavoué, S., & Sullivan, J. P. (2007). Mormyridae. In M. L. J. Stiassny, G. G. Teugels, &C. D. Hopkins (Eds.), The fresh and brackish water fishes of Lower Guinea, West-Central Africa. (1, pp. 219–334). Paris: IRD Éditions.
  • Hoskin, C. J., & Higgie, M. (2010). Speciation via species interactions: The divergence of mating traits within species. Ecol Lett, 13, 409–420.
  • Hoyle, G. (1984). The scope of neuroethology. Behav Brain Sci, 7, 367–412.
  • Hughes, A. L. (2002). Natural selection and the diversification of vertebrate immune effectors. Immunol Rev, 190, 161–168.
  • Hunter, J. P. (1998). Key innovations and the ecology of macroevolution. Trends Ecol Evol, 13, 31–36.
  • Jessen, T. H., Weber, R. E., Fermi, G., Tame, J., & Braunitzer, G. (1991). Adaptation of bird hemoglobins to high altitudes: Demonstration of molecular mechanism by protein engineering. Proc Natl Acad Sci U S A, 88, 6519–6522.
  • Jørgensen, J. M. (2005). Morphology of electroreceptive sensory organs. InT. H. Bullock, C. D. Hopkins, A. Popper, & R. R. Fay (Eds.), Electroreception. ( 21, pp. 47–67). New York: Springer.
  • Katz, P. S. (2010). The nature of neuroethology. Brain Behav Evol, 73, 163–164.
  • Kawasaki, M. (2011). Generation of electric signals. In A. P. Farrell (Ed.), Morphology of electroreceptive sensory organs: From genome to environment. (Vol. 1, pp. 398–408). San Diego: Academic Press.
  • Kim, H. J., Archer, E., Escobedo, N., Tapscott, S. J., & Unguez, G. A. (2008). Inhibition of mammalian muscle differentiation by regeneration blastema extract of Sternopygus macrurus. Dev Dynam, 237, 2830–2843.
  • Kirschbaum, F. (1981). Ontogeny of both larval electric organ and electromotorneurones in Pollimyrus isidori (Mormyridae, Teleostei). Adv Physiol Sci, 31, 129–157.
  • Kirschbaum, F. (1987). Reproduction and development of the weakly electric fish Pollimyrus isidori (Mormyridae, Teleostei) in captivity. Environ Biol Fishes, 20, 11–32.
  • Kirschbaum, F., Denizot, J.-P., & Tsuji, S. (1979). On the electromotor neurons of both electric organs in Pollimyrus isidori (Mormyridae, Teleostei). J Physiol Paris, 75, 429–433.
  • Kramer, B. (1979). Electric and motor responses of the weakly electric fish, Gnathonemus petersii (Mormyridae), to play-back of social signals. Behav Ecol Sociobiol, 6, 67–79.
  • Kramer, B., & Bauer, R. (1976). Agonistic behavior and electric signaling in a mormyrid fish, Gnathonemus petersii. Behav Ecol Sociobiol, 1, 45–61.
  • Kramer, B., & Kuhn, B. (1994). Species recognition by the sequence of discharge intervals in weakly electric fishes of the genus Campylomormyrus (Mormyridae, Teleostei). Anim Behav, 48, 435–445.
  • Kramer, B., & van der Bank, F. H. (2000). The southern churchill, Petrocephalus wesselsi, a new species of mormyrid from South Africa defined by electric organ discharges, genetics, and morphology. Environ Biol Fishes, 59, 393–413.
  • Kramer, B., van der Bank, F. H., Flint, N., Sauer-Gurth, H., & Wink, M. (2003). Evidence for parapatric speciation in the Mormyrid fish, Pollimyrus castelnaui (Boulenger, 1911), from the Okavango-Upper Zambezi River Systems: P. marianne sp nov., defined by electric organ discharges, morphology and genetics. Environ Biol Fishes, 67, 47–70.
  • Kramer, B., van der Bank, F. H., & Wink, M. (2004). Hippopotamyrus ansorgii species complex in the Upper Zambezi River System with a description of a new species, H. szaboi (Mormyridae). Zool Scripta, 33, 1–18.
  • Lamml, M., & Kramer, B. (2006). Differentiation of courtship songs in parapatric sibling species of dwarf stonebashers from southern Africa (Mormyridae, Teleostei). Behaviour, 143, 783–810.
  • Lamml, M., & Kramer, B. (2007). Allopatric differentiation in the acoustic communication of a weakly electric fish from southern Africa, Marcusenius macrolepidotus (Mormyridae, Teleostei). Behav Ecol Sociobiol, 61, 385–399.
  • Lavoué, S., Arnegard, M. E., Sullivan, J. P., & Hopkins, C. D. (2008). Petrocephalus of Odzala offer insights into evolutionary patterns of signal diversification in the Mormyridae, a family of weakly electrogenic fishes from Africa. J Physiol Paris, 102, 322–339.
  • Lavoué, S., Hopkins, C. D., & Toham, A. K. (2004). The Petrocephalus (Pisces, Osteoglossomorpha, Mormyridae) of Gabon, Central Africa, with the description of a new species. Zoosystema, 26, 511–535.
  • Lavoue , S., Miya, M., Arnegard, M. E., Sullivan, J. P., Hopkins, C. D., & Nishida, M. (2012). Comparable ages for the independent origins of electrogenesis in African and South American weakly electric fishes. PLoS ONE, 7, e36287.
  • Lavoué, S., Sullivan, J. P., & Arnegard, M. E. (2010). African weakly electric fishes of the genus Petrocephalus (Osteoglossomorpha: Mormyridae) of Odzala National Park, Republic of the Congo (Lékoli River, Congo River basin) with description of five new species. Zootaxa, 2600, 1–52.
  • Lavoué, S., Sullivan, J. P., & Hopkins, C. D. (2003). Phylogenetic utility of the first two introns of the S7 ribosomal protein gene in African electric fishes (Mormyroidea: Teleostei) and congruence with other molecular markers. Biol J Linn Soc, 78, 273–292.
  • Losos, J. B., Arnold, S. J., Bejerano, G., Brodie, E. D., III, Hibbett, D., Hoekstra, H. E., Mindell, D. P., Monteiro, A., Moritz, C., Orr, H. A., et al. (2013). Evolutionary biology for the 21st century. PLoS Biol, 11, e1001466.
  • Lyons-Warren, A. M., Hollmann, M., & Carlson, B. A. (2012). Sensory receptor diversity establishes a peripheral population code for stimulus duration at low intensities. J Exp Biol, 215, 2586–2600.
  • Lyons-Warren, A. M., Kohashi, T., Mennerick, S., & Carlson, B. A. (In Review). Detection of submillisecond spike timing differences based on delay-line anti-coincidence detection.
  • Ma, X., Kohashi, T., & Carlson, B. A. (2013). Extensive excitatory network interactions shape temporal processing of communication signals in a model sensory system. J Neurophysiol, In Press, doi:10.1152/jn.00145.2013
  • MacDougall-Shackleton, S. A. (2011). The levels of analysis revisited. Phil Trans R Soc B, 366, 2076–2085.
  • Machnik, P., & Kramer, B. (2008). Female choice by electric pulse duration: Attractiveness of the males’ communication signal assessed by female bulldog fish, Marcusenius pongolensis (Mormyridae, Teleostei). J Exp Biol, 211, 1969–1977.
  • Markham, M., & Stoddard, P. K. (2005). Adrenocorticotropic hormone enhances the masculinity of an electric communication signal by modulating the waveform and timing of action potentials within individual cells. J Neurosci, 25, 8746–8754.
  • Markham, M. R., McAnelly, M. L., Stoddard, P. K., & Zakon, H. H. (2009). Circadian and social cues regulate ion channel trafficking. PLoS Biol, 7, e1000203.
  • Mayr, E. (1961). Cause and effect in biology. Science, 134, 1501–1506.
  • Mayr, E. (1963). Animal species and evolution. New York: Belknap Press.
  • Mayr, E. (1993). Proximate and ultimate causations. Biol Philos, 8, 93–94.
  • McAnelly, L., Silva, A. C., & Zakon, H. H. (2003). Cyclic AMP modulates electrical signaling in a weakly electric fish. J Comp Physiol A, 189, 273–282.
  • McAnelly, L., & Zakon, H. H. (1996). Protein kinase A activation increases sodium current magnitude in the electric organ of Sternopygus. J Neurosci, 16, 4383–4388.
  • McAnelly, L., & Zakon, H. H. (2000). Coregulation of voltage-dependent kinetics of Na(+) and K(+) currents in electric organ. J Neurosci, 20, 3408–3414.
  • McNamara, J. M., & Houston, A. I. (2009). Integrating function and mechanism. Trends Ecol Evol, 24, 670–675.
  • Mendelson, T. C., & Shaw, K. C. (2005). Sexual behavior: Rapid speciation in an arthropod. Nature, 433, 375–376.
  • Metscher, B. D., Northcutt, R. G., Gardiner, D. M., & Bryant, S. V. (1997). Homeobox genes in axolotl lateral line placodes and neuromasts. Dev Genes Evol, 207, 287–295.
  • Mills, A., & Zakon, H. H. (1987). Coordination of EOD frequency and pulse duration in a weakly electric wave fish: The influence of androgens. J Comp Physiol A, 161, 417–430.
  • Modrell, M. S., & Baker, C. V. H. (2012). Evolution of electrosensory ampullary organs: Conservation of Eya4 expression during lateral line development in jawed vertebrates. Evol Dev, 14, 277–285.
  • Modrell, M. S., Bemis, W. E., Northcutt, R. G., Davis, M. C., & Baker, C. V. H. (2011a). Electrosensory ampullary organs are derived from lateral line placodes in bony fishes. Nat Commun, 2, 496.
  • Modrell, M. S., Buckley, D., & Baker, C. V. H. (2011b). Molecular analysis of neurogenic placode development in a basal ray-finned fish. Genesis, 49, 278–294.
  • Moller, P. (1976). Electric signals and schooling behavior in a weakly electric fish Marcusenius cyprinoides (Mormyriformes). Science, 193, 697–699.
  • Moller, P. (1995). Electric fishes: History and behavior. New York: Chapman & Hall.
  • Montgomery, J. C., Coombs, S., Conley, R. A., & Bodznick, D. (1995). Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: A comparative overview of anatomical and functional similarities. Aud Neurosci, 1, 207–231.
  • Mugnaini, E., & Maler, L. (1987a). Cytology and immunocytochemistry of the nucleus extrolateralis anterior of the mormyrid brain: Possible role of GABAergic synapses in temporal analysis. Anat Embryol (Berl), 176, 313–336.
  • Mugnaini, E., & Maler, L. (1987b). Cytology and immunocytochemistry of the nucleus of the lateral line lobe in the electric fish Gnathonemus petersii (Mormyridae): Evidence suggesting that GABAergic synapses mediate an inhibitory corollary discharge. Synapse, 1, 32–56.
  • Mullen, S. P., Mendelson, T. C., Schal, C., & Shaw, K. L. (2007). Rapid evolution of cuticular hydrocarbons in a species radiation of acoustically diverse Hawaiian crickets (Gryllidae: Trigonidiinae: Laupala). Evolution, 61, 223–231.
  • New, J. G. (1997). The evolution of vertebrate electrosensory systems. Brain Behav Evol, 50, 244–252.
  • Nielsen, R., Bustamante, C., Clark, A. G., Glanowski, S., & Sackton, T. B. (2005). A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol, 3, e170.
  • Northcutt, R. G. (1986). Electroreception in nonteleost bony fishes. In T. H. Bullock & W. Heiligenberg (Eds.), Electroreception (pp. 257–285). New York: John Wiley & Sons.
  • Northcutt, R. G. (1989). The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and evolution. (pp. 17–78). New York: Springer-Verlag.
  • Northcutt, R. G. (2005). Ontogeny of electroreceptors and their neural circuitry. In T. H. Bullock, C. D. Hopkins, A. Popper, & R. R. Fay (Eds.), Electroreception. (Vol. 21, pp. 112–131). New York: Springer.
  • Northcutt, R. G., Brändle, K., & Fritzsch, B. (1995). Electroreceptors and mechanosensory lateral line organs arise from single placodes in axolotls. Dev Biol, 168, 358–373.
  • Northcutt, R. G., Catania, K. C., & Criley, B. B. (1994). Development of lateral-line organs in the Axolotl. J Comp Neurol, 340, 480–514.
  • O’Neill, P., McCole, R. B., & Baker, C. V. H. (2007). A molecular analysis of neurogenic placode and cranial sensory ganglion development in the shark, Scyliorhinus canicula. Dev Biol, 304, 156–181.
  • Ohno, S. (1970). Evolution by gene duplication. New York: Springer-Verlag.
  • Paintner, S., & Kramer, B. (2003). Electrosensory basis for individual recognition in a weakly electric, mormyrid fish, Pollimyrus adspersus (Günther, 1866). Behav Ecol Sociobiol, 55, 197–208.
  • Panhuis, T. M., Butlin, R., Zuk, M., & Tregenza, T. (2001). Sexual selection and speciation. Trends Ecol Evol, 16, 364–371.
  • Patterson, J. M., & Zakon, H. H. (1997). Transdifferentiation of muscle to electric organ: Regulation of muscle-specific proteins is independent of patterned nerve activity. Dev Biol, 186, 115–126.
  • Pflüger, H.-J., & Menzel, R. (1999). Neuroethology, its roots and future. J Comp Physiol A, 185, 389–392.
  • Pigliucci, M. (2008). What, if anything, is an evolutionary novelty?Philos Sci, 75, 887–898.
  • Postner, M., & Kramer, B. (1995). Electrosensory thresholds in larvae of the weakly electric fish Pollimyrus isidori (Mormyridae, Teleostei) during ontogeny. J Exp Biol, 198, 783–791.
  • Ptacek, M. B. (2000). The role of mating preferences in shaping interspecific divergence in mating signals in vertebrates. Behav Process, 51, 111–134.
  • Ritchie, M. G. (2007). Sexual selection and speciation. Annu Rev Ecol Evol System, 38, 79–102.
  • Rose, G. J. (2004). Insights into neural mechanisms and evolution of behaviour from electric fish. Nat Rev Neurosci, 5, 943–951.
  • Roth, A. (1986). Afferent fibers induce electroreceptors in the skin of fish. Naturwissenschaften, 73, 264–266.
  • Roth, A. (1993). Regenerative outgrowth and distribution of the electroreceptive nerve-fibers in the catfish Kryptopterus. J Comp Neurol, 328, 473–484.
  • Rudel, D., & Sommer, R. J. (2003). The evolution of developmental mechanisms. Dev Biol, 264, 15–37.
  • Ryan, M. J. (2005). The evolution of behaviour, and integrating it towards a complete and correct understanding of behavioural biology. Anim Biol, 55, 419–439.
  • Sawtell, N., Williams, A., & Bell, C. (2005). From sparks to spikes: Information processing in the electrosensory systems of fish. Curr Opin Neurobiol, 15, 437–443.
  • Schlosser, G. (2002). Development and evolution of lateral line placodes in amphibians. I. Development. Zoology, 105, 119–146.
  • Schluger, J. H., & Hopkins, C. D. (1987). Electric fish approach stationary signal sources by following electric current lines. J Exp Biol, 130, 359–367.
  • Schluter, D. (2000). The ecology of adaptive radiation. New York: Oxford University Press.
  • Servedio, M. R., van Doorn, G. S., Kopp, M., Frame, A. M., & Nosil, P. (2011). Magic traits in speciation: ‘Magic’ but not rare?Trends Ecol Evol, 26, 389–397.
  • Sherman, P. W. (1988). The levels of analysis. Anim Behav, 36, 616–619.
  • Sherry, D. F. (2005). Do ideas about function help in the study of causation?Anim Biol, 55, 441–456.
  • Sherry, D. F. (2006). Neuroecology. Annu Rev Psychol, 57, 167–197.
  • Shubin, N., Tabin, C., & Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature, 457, 818–823.
  • Simpson, G. G. (1953). The major features of evolution. New York: Columbia University Press.
  • Sommer, R. J. (2009). The future of evo-devo: Model systems and evolutionary theory. Nat Rev Genet, 10, 416–422.
  • Stoddard, P. K. (1999). Predation enhances complexity in the evolution of electric fish signals. Nature, 400, 254–256.
  • Stoddard, P. K. (2002). Electric signals: Predation, sex, and environmental constraints. Adv Stud Behav,31, 201–242.
  • Sullivan, J. P., Lavoué, S., Arnegard, M. E., & Hopkins, C. D. (2004). AFLPs resolve phylogeny and reveal mitochondrial introgression within a species flock of African electric fish (Mormyroidea: Teleostei). Evolution, 58, 825–841.
  • Sullivan, J. P., Lavoué, S., & Hopkins, C. D. (2000). Molecular systematics of the African electric fishes (Mormyroidea: Teleostei) and a model for the evolution of their electric organs. J Exp Biol, 203, 665–683.
  • Sullivan, J. P., Lavoué, S., & Hopkins, C. D. (2002). Discovery and phylogenetic analysis of a riverine species flock of African electric fishes (Mormyridae: Teleostei). Evolution, 56, 597–616.
  • Szabo, T. (1960). Development of the electric organ of Mormyridae. Nature, 188, 760–762.
  • Szabo, T. (1965). Sense organs of the lateral line system in some electric fish of the Gymnotidae, Mormyridae, and Gymnarchidae. J Morphol, 117, 229–250.
  • Szabo, T., & Kirschbaum, F. (1983). On the differentiation of electric organs in the absence of central connections or peripheral innervation. In A. D. Grinnell & W. J. Moody Jr. (Eds.), The physiology of excitable cells. (pp. 451–460). New York: Alan R. Liss.
  • Szabo, T., & Ravaille, M. (1976). Synaptic structure of the lateral line lobe nucleus in mormyrid fish. Neurosci Lett, 2, 127–132.
  • Taylor, J. S., & Raes, J. (2004). Duplication and divergence: The evolution of new genes and old ideas. Annu Rev Genet, 38, 615–643.
  • Terleph, T. A., & Moller, P. (2003). Effects of social interaction on the electric organ discharge in a mormyrid fish, Gnathonemus petersii (Mormyridae, Teleostei). J Exp Biol, 206, 2355–2362.
  • Teyssedre, C., & Serrier, J. (1986). Temporal spacing of signals in communication, studied in weakly-electric mormyrid fish (Teleostei, Pisces). Behav Process, 12, 77–98.
  • Thierry, B. (2005). Integrating proximate and ultimate causation: Just one more go!Curr Sci, 89, 1180–1183.
  • Unguez, G. A., & Zakon, H. H. (1998a). Phenotypic conversion of distinct muscle fiber populations to electrocytes in a weakly electric fish. J Comp Neurol, 399, 20–34.
  • Unguez, G. A., & Zakon, H. H. (1998b). Reexpression of myogenic proteins in mature electric organ after removal of neural input. J Neurosci, 18, 9924–9935.
  • Vischer, H. A. (1989a). The development of lateral-line receptors in Eigenmannia (Teleostei, Gymnotiformes). I. The mechanoreceptive lateral-line system. Brain Behav Evol, 33, 205–222.
  • Vischer, H. A. (1989b). The development of lateral-line receptors in Eigenmannia (Teleostei, Gymnotiformes). II. The electroreceptive lateral-line system. Brain Behav Evol, 33, 223–236.
  • Vischer, H. A. (1995). Electroreceptor development in the electric fish Eigenmannia: A histological and ultrastructural study. J Comp Neurol, 360, 81–100.
  • Vischer, H. A., Lannoo, M. J., & Heiligenberg, W. (1989). Development of the electrosensory nervous system in Eigenmannia (Gymnotiformes). I. The peripheral nervous system. J Comp Neurol, 290, 16–40.
  • von der Emde, G. (1999). Active electrolocation of objects in weakly electric fish. J Exp BIol, 202, 1205–1215.
  • von der Emde, G., Sena, L. G., Niso, R., & Grant, K. (2000). The midbrain precommand nucleus of the mormyrid electromotor network. J Neurosci, 20, 5483–5495.
  • Wagner, C. E., Harmon, L. J., & Seehausen, O. (2012). Ecological opportunity and sexual selection together predict adaptive radiation. Nature, 487, 366–370.
  • Wagner, G. P., & Lynch, V. J. (2010). Evolutionary novelties. Curr Biol, 20, R48–R52.
  • West-Eberhard, M. J. (1983). Sexual selection, social competition, and speciation. Quart Rev Biol, 58, 155–183.
  • Westby, G. W. M., & Kirschbaum, F. (1977). Emergence and development of electric organ discharge in mormyrid fish, Pollimyrus isidori. 1. Larval discharge. J Comp Physiol, 122, 251–271.
  • Wong, R. Y., & Hopkins, C. D. (2007). Electrical and behavioral courtship displays in the mormyrid fish Brienomyrus brachyistius. J Exp Biol, 210, 2244–2252.
  • Wray, G. A. (2007). The evolutionary significance of cis-regulatory mutations. Nat Rev Genet, 8, 206–216.
  • Xu-Friedman, M. A., & Hopkins, C. D. (1999). Central mechanisms of temporal analysis in the knollenorgan pathway of mormyrid electric fish. J Exp Biol, 202, 1311–1318.
  • Yokoyama, S. (2002). Molecular evolution of color vision in vertebrates. Gene, 300, 69–78.
  • Zahavi, A., & Zahavi, A. (1997). The handicap principle: A missing piece of Darwin's puzzle. Oxford: Oxford University Press.
  • Zakon, H., Zwickl, D., Lu, Y., & Hillis, D. (2008). Molecular evolution of communication signals in electric fish. J Exp Biol, 211, 1814–1818.
  • Zakon, H. H. (1984). Postembryonic changes in the peripheral electrosensory system of a weakly electric fish Sternopygus dariensis: Addition of receptor organs with age. J Comp Neurol, 228, 557–570.
  • Zakon, H. H. (1986). The electroreceptive periphery. In T. H. Bullock & W. Heiligenberg (Eds.), Electroreception. (pp. 103–156). New York: John Wiley & Sons.
  • Zakon, H. H. (2003). Insight into the mechanisms of neuronal processing from electric fish. Curr Opin Neurobiol, 13, 744–750.
  • Zakon, H. H., Lu, Y., Zwickl, D. J., & Hillis, D. M. (2006). Sodium channel genes and the evolution of diversity in communication signals of electric fishes: Convergent molecular evolution. Proc Natl Acad Sci U S A, 103, 3675–3680.
  • Zakon, H. H., McAnelly, L., Smith, G. T., Dunlap, K., Lopreato, G., Oestreich, J., & Few, P. (1999). Plasticity of the electric organ discharge: Implications for the regulation of ionic currents. J Exp Biol, 202, 1409–1416.
  • Zhang, J. Z. (2006). Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nat Genet, 38, 819–823.
  • Zhang, J. Z., Zhang, Y. P., & Rosenberg, H. F. (2002). Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat Genet, 30, 411–415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.