149
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Transient Receptor Potential Melastatin (TRPM) Channels Mediate Clozapine-induced Phenotypes in Caenorhabditis elegans

, , &
Pages 86-97 | Received 15 Oct 2013, Accepted 29 Dec 2013, Published online: 25 Feb 2014

REFERENCES

  • Abdus-Saboor, I., Mancuso, V. P., Murray, J. I., Palozola, K., Norris, C., Hall, D. H., Howell, K., Huang, K., & Sundaram, M. V. (2011). Notch and Ras promote sequential steps of excretory tube development in C. elegans. Development, 138, 3545–3555.
  • Abdus-Saboor, I., Stone, C. E., Murray, J. I., & Sundaram, M. V. (2012). The Nkx5/HMX homeodomain protein MLS-2 is required for proper tube cell shape in the C. elegans excretory system. Dev Biol, 366, 298–307.
  • Athanassenas, G., Papadopoulos, E., Kourkoubas, A., Tsitourides, S., Gabriel, J., Hoidas, S., & Frangos, E. (1983). Serum calcium and magnesium levels in chronic schizophrenics. J Clin Psychopharmacol, 3, 212–216.
  • Berry, K. L., Bulow, H. E., Hall, D. H., & Hobert, O. (2003). A C. elegans CLIC-like protein required for intracellular tube formation and maintenance. Science, 302, 2134–2137.
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.
  • Buechner, M., Hall, D. H., Bhatt, H., & Hedgecock, E. M. (1999). Cystic canal mutants in Caenorhabditis elegans are defective in the apical membrane domain of the renal (excretory) cell. Dev Biol, 214, 227–241.
  • Burne, T., Scott, E., van Swinderen, B., Hilliard, M., Reinhard, J., Claudianos, C., Eyles, D., & McGrath, J. (2011). Big ideas for small brains: What can psychiatry learn from worms, flies, bees and fish?Mol Psychiatry, 16, 7–16.
  • Chahl, L. A. (2007). TRP’s: Links to schizophrenia?Biochim Biophys Acta, 1772, 968–977.
  • Chubanov, V., Waldegger, S., Mederos y Schnitzler, M., Vitzthum, H., Sassen, M. C., Seyberth, H. W., Konrad, M., & Gudermann, T. (2004). Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A, 101, 2894–2899.
  • WormBase web site. (2013). http://www.wormbase.org, release WS238. Retrieved from http://www.wormbase.org/db/get?name=WBGene00001651;class=Gene.
  • Donohoe, D. R., Aamodt, E. J., Osborn, E., & Dwyer, D. S. (2006). Antipsychotic drugs disrupt normal development in Caenorhabditis elegans via additional mechanisms besides dopamine and serotonin receptors. Pharmacol Res, 54, 361–372.
  • Donohoe, D. R., Jarvis, R. A., Weeks, K., Aamodt, E. J., & Dwyer, D. S. (2009). Behavioral adaptation in C. elegans produced by antipsychotic drugs requires serotonin and is associated with calcium signaling and calcineurin inhibition. Neurosci Res, 64, 280–289.
  • Fonfria, E., Murdock, P. R., Cusdin, F. S., Benham, C. D., Kelsell, R. E., & McNulty, S. (2006). Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res, 26, 159–178.
  • Fujita, M., Hawkinson, D., King, K. V., Hall, D. H., Sakamoto, H., & Buechner, M. (2003). The role of the ELAV homologue EXC-7 in the development of the Caenorhabditis elegans excretory canals. Dev Biol, 256, 290–301.
  • Gaudet, J., & Mango, S. E. (2002). Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science, 295, 821–825.
  • Gilleard, J. S., Barry, J. D., & Johnstone, I. L. (1997). cis regulatory requirements for hypodermal cell-specific expression of the Caenorhabditis elegans cuticle collagen gene dpy-7. Mol Cell Biol, 17, 2301–2311.
  • Gubert, P., Aguiar, G. C., Mourao, T., Bridi, J. C., Barros, A. G., Soares, F. A., & Romano-Silva, M. A. (2013). Behavioral and metabolic effects of the atypical antipsychotic Ziprasidone on the nematode Caenorhabditis elegans. PLoS ONE, 8, e74780.
  • Hardie, R. C., & Minke, B. (1992). The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron, 8, 643–651.
  • Hille, B. (2001). Ion channels of excitable membranes. Sunderland, MA: Sinauer Associates.
  • Hermosura, M. C., Cui, A. M., Go, R. C., Davenport, B., Shetler, C. M., Heizer, J. W., Schmitz, C., Mocz, G., Garruto, R. M., & Perraud, A. L. (2008). Altered functional properties of a TRPM2 variant in Guamanian ALS and PD. Proc Natl Acad Sci U S A, 105, 18029–18034.
  • Ibrahim, H. M., & Tamminga, C. A. (2011). Schizophrenia: Treatment targets beyond monoamine systems. Annu Rev Pharmacol Toxicol, 51, 189–209.
  • Kahn-Kirby, A. H., & Bargmann, C. I. (2006). TRP channels in C. elegans. Annu Rev Physiol, 68, 719–736.
  • Kane, J., Honigfeld, G., Singer, J., & Meltzer, H. (1988). Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry, 45, 789–796.
  • Karmacharya, R., Lynn, S. K., Demarco, S., Ortiz, A., Wang, X., Lundy, M. Y., Xie, Z., Cohen, B. M., Miller, G. M., & Buttner, E. A. (2011). Behavioral effects of clozapine: Involvement of trace amine pathways in C. elegans and M. musculus. Brain Res, 1393, 91–99.
  • Karmacharya, R., Sliwoski, G. R., Lundy, M. Y., Suckow, R. F., Cohen, B. M., & Buttner, E. A. (2009). Clozapine interaction with phosphatidyl inositol 3-kinase (PI3K)/insulin-signaling pathway in Caenorhabditis elegans. Neuropsychopharmacology, 34, 1968–1978.
  • Kraft, R., Grimm, C., Grosse, K., Hoffmann, A., Sauerbruch, S., Kettenmann, H., Schultz, G., & Harteneck, C. (2004). Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol, 286, C129–C137.
  • Kwan, C. S., Vazquez-Manrique, R. P., Ly, S., Goyal, K., & Baylis, H. A. (2008). TRPM channels are required for rhythmicity in the ultradian defecation rhythm of C. elegans. BMC Physiol, 8, 11.
  • Mah, A. K., Armstrong, K. R., Chew, D. S., Chu, J. S., Tu, D. K., Johnsen, R. C., Chen, N., Chamberlin, H. M., & Baillie, D. L. (2007). Transcriptional regulation of AQP-8, a Caenorhabditis elegans aquaporin exclusively expressed in the excretory system, by the POU homeobox transcription factor CEH-6. J Biol Chem, 282, 28074–28086.
  • Mah, A. K., Tu, D. K., Johnsen, R. C., Chu, J. S., Chen, N., & Baillie, D. L. (2010). Characterization of the octamer, a cis-regulatory element that modulates excretory cell gene-expression in Caenorhabditis elegans. BMC Mol Biol, 11, 19.
  • Mattingly, B. C., & Buechner, M. (2011). The FGD homologue EXC-5 regulates apical trafficking in C. elegans tubules. Dev Biol, 359, 59–72.
  • McQuillin, A., Bass, N. J., Kalsi, G., Lawrence, J., Puri, V., Choudhury, K., Detera-Wadleigh, S. D., Curtis, D., & Gurling, H. M. (2006). Fine mapping of a susceptibility locus for bipolar and genetically related unipolar affective disorders, to a region containing the C21ORF29 and TRPM2 genes on chromosome 21q22.3. Mol Psychiatry, 11, 134–142.
  • Mello, C. C., Kramer, J. M., Stinchcomb, D., & Ambros, V. (1991). Efficient gene transfer in C. elegans: Extrachromosomal maintenance and integration of transforming sequences. EMBO J, 10, 3959–3970.
  • Meltzer, H. Y. (2013). Update on typical and atypical antipsychotic drugs. Annu Rev Med, 64, 393–406.
  • Minke, B. (2010). The history of the Drosophila TRP channel: The birth of a new channel superfamily. J Neurogenet, 24, 216–233.
  • Montell, C., & Rubin, G. M. (1989). Molecular characterization of the Drosophila trp locus: A putative integral membrane protein required for phototransduction. Neuron, 2, 1313–1323.
  • Moran, M. M., Xu, H., & Clapham, D. E. (2004). TRP ion channels in the nervous system. Curr Opin Neurobiol, 14, 362–369.
  • Murphy, J. T., Bruinsma, J. J., Schneider, D. L., Collier, S., Guthrie, J., Chinwalla, A., Robertson, J. D., Mardis, E. R., & Kornfeld, K. (2011). Histidine protects against zinc and nickel toxicity in Caenorhabditis elegans. PLoS Genet, 7, e1002013.
  • Neuhaus, R., & Cachelin, A. B. (1990). Changes in the conductance of the neuronal nicotinic acetylcholine receptor channel induced by magnesium. Proc Biol Sci, 241, 78–84.
  • Raizen, D. M., Lee, R. Y., & Avery, L. (1995). Interacting genes required for pharyngeal excitation by motor neuron MC in Caenorhabditis elegans. Genetics, 141, 1365–1382.
  • Roth, B. L., Sheffler, D. J., & Kroeze, W. K. (2004). Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov, 3, 353–359.
  • Rothman, S. M. (1983). Synaptic activity mediates death of hypoxic neurons. Science, 220, 536–537.
  • Saur, T., Demarco, S. E., Ortiz, A., Sliwoski, G. R., Hao, L., Wang, X., Cohen, B. M., & Buttner, E. A. (2013). A genome-wide RNAi screen in Caenorhabditis elegans identifies the nicotinic acetylcholine receptor subunit ACR-7 as an antipsychotic drug target. PLoS Genet, 9, e1003313.
  • Schlingmann, K. P., Waldegger, S., Konrad, M., Chubanov, V., & Gudermann, T. (2007). TRPM6 and TRPM7—Gatekeepers of human magnesium metabolism. Biochim Biophys Acta, 1772, 813–821.
  • Schlingmann, K. P., Weber, S., Peters, M., Niemann Nejsum, L., Vitzthum, H., Klingel, K., Kratz, M., Haddad, E., Ristoff, E., Dinour, D., Syrrou, M., Nielsen, S., Sassen, M., Waldegger, S., Seyberth, H. W., & Konrad, M. (2002). Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet, 31, 166–170.
  • Stawicki, T. M., Zhou, K., Yochem, J., Chen, L., & Jin, Y. (2011). TRPM channels modulate epileptic-like convulsions via systemic ion homeostasis. Curr Biol, 21, 883–888.
  • Teramoto, T., Lambie, E. J., & Iwasaki, K. (2005). Differential regulation of TRPM channels governs electrolyte homeostasis in the C. elegans intestine. Cell Metab, 1, 343–354.
  • Teramoto, T., Sternick, L. A., Kage-Nakadai, E., Sajjadi, S., Siembida, J., Mitani, S., Iwasaki, K., & Lambie, E. J. (2010). Magnesium excretion in C. elegans requires the activity of the GTL-2 TRPM channel. PLoS ONE, 5, e9589.
  • Tong, X., & Buechner, M. (2008). CRIP homologues maintain apical cytoskeleton to regulate tubule size in C. elegans. Dev Biol, 317, 225–233.
  • Venkatachalam, K., & Montell, C. (2007). TRP channels. Annu Rev Biochem, 76, 387–417.
  • Voets, T., Nilius, B., Hoefs, S., van der Kemp, A. W., Droogmans, G., Bindels, R. J., & Hoenderop, J. G. (2004). TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem, 279, 19–25.
  • Walder, R. Y., Landau, D., Meyer, P., Shalev, H., Tsolia, M., Borochowitz, Z., Boettger, M. B., Beck, G. E., Englehardt, R. K., Carmi, R., & Sheffield, V. C. (2002). Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet, 31, 171–174.
  • Wang, X., Sliwoski, G. R., & Buttner, E. A. (2011). The relevance of Caenorhabditis elegans genetics for understanding human psychiatric disease. Harv Rev Psychiatry, 19, 210–218.
  • Watanabe, M., George, S. R., & Seeman, P. (1985). Regulation of anterior pituitary D2 dopamine receptors by magnesium and sodium ions. J Neurochem, 45, 1842–1849.
  • Weeks, K. R., Dwyer, D. S., & Aamodt, E. J. (2010). Antipsychotic drugs activate the C. elegans Akt pathway via the DAF-2 insulin/IGF-1 receptor. ACS Chem Neurosci, 1, 463–473.
  • Weeks, K. R., Dwyer, D. S., & Aamodt, E. J. (2011). Clozapine and lithium require Caenorhabditis elegans beta-arrestin and serum- and glucocorticoid-inducible kinase to affect Daf-16 (FOXO) localization. J Neurosci Res, 89, 1658–1665.
  • West, R. J., Sun, A. Y., Church, D. L., & Lambie, E. J. (2001). The C. elegans gon-2 gene encodes a putative TRP cation channel protein required for mitotic cell cycle progression. Gene, 266, 103–110.
  • Xing, J., & Strange, K. (2010). Phosphatidylinositol 4,5-bisphosphate and loss of PLCγ activity inhibit TRPM channels required for oscillatory Ca2+ signaling. Am J Physiol Cell Physiol, 298, C274–C282.
  • Xing, J., Yan, X., Estevez, A., & Strange, K. (2008). Highly Ca2+-selective TRPM channels regulate IP3-dependent oscillatory Ca2+ signaling in the C. elegans intestine. J Gen Physiol, 131, 245–255.
  • Xu, C., Macciardi, F., Li, P. P., Yoon, I. S., Cooke, R. G., Hughes, B., Parikh, S. V., McIntyre, R. S., Kennedy, J. L., & Warsh, J. J. (2006). Association of the putative susceptibility gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet, 141B, 36–43.
  • Xu, S., & Chisholm, A. D. (2011). A Gαq-Ca2+ signaling pathway promotes actin-mediated epidermal wound closure in C. elegans. Curr Biol, 21, 1960–1967.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.