567
Views
47
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Rapamycin alleviates pathogenesis of a new Drosophila model of ALS-TDP

, &
Pages 59-68 | Received 03 Mar 2015, Accepted 27 Jul 2015, Published online: 29 Jul 2015

References

  • Aoki, N., Murray, M.E., Ogaki, K., Fujioka, S., Rutherford, N.J., Rademakers, R., et al. (2015). Hippocampal sclerosis in Lewy body disease is a TDP-43 proteinopathy similar to FTLD-TDP Type A. Acta Neuropathol, 129, 53–64.
  • Ayala, Y.M., Misteli, T., & Baralle, F.E. (2008). TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc Natl Acad Sci U S A, 105, 3785–3789.
  • Barmada, S.J., Serio, A., Arjun, A., Bilican, B., Daub, A., Ando, D.M., et al. (2014). Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol, 10, 677–685.
  • Benzer, S. (1967). Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc Natl Acad Sci U S A, 58, 1112–1119.
  • Bose, J.K., Huang, C.C., & Shen, C.K. (2011). Regulation of autophagy by neuropathological protein TDP-43. J Biol Chem, 286, 44441–44448.
  • Bose, J.K., Wang, I.F., Hung, L., Tarn, W.Y., & Shen, C.K. (2008). TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. J Biol Chem, 283, 28852–28859.
  • Brady, O.A., Meng, P., Zheng, Y., Mao, Y., & Hu, F. (2011). Regulation of TDP-43 aggregation by phosphorylation and p62/SQSTM1. J Neurochem, 116, 248–259.
  • Buratti, E., & Baralle, F.E. (2001). Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem, 276, 36337–36343.
  • Buratti, E., & Baralle, F.E. (2009). The molecular links between TDP-43 dysfunction and neurodegeneration. Adv Genet, 66, 1–34.
  • Buratti, E., Brindisi, A., Giombi, M., Tisminetzky, S., Ayala, Y.M., & Baralle, F.E. (2005). TDP-43 binds heterogeneous nuclear ribo nucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem, 280, 37572–37584.
  • Buratti, E., De Conti, L., Stuani, C., Romano, M., Baralle, M., & Baralle, F. (2010). Nuclear factor TDP-43 can affect selected microRNA levels. FEBS J, 277, 2268–2281.
  • Buratti, E., Dork, T., Zuccato, E., Pagani, F., Romano, M., & Baralle, F.E. (2001). Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J, 20, 1774–1784.
  • Caccamo, A., Majumder, S., Deng, J.J., Bai, Y., Thornton, F.B., & Oddo, S. (2009). Rapamycin rescues TDP-43 mislocalization and the associated low molecular mass neurofilament instability. J Biol Chem, 284, 27416–27424.
  • Caccamo, A., Majumder, S., Richardson, A., Strong, R., & Oddo, S. (2010). Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem, 285, 13107–13120.
  • Chen-Plotkin, A.S., Lee, V.M., & Trojanowski, J.Q. (2010). TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol, 6, 211–220.
  • Chiang, P.M., Ling, J., Jeong, Y.H., Price, D.L., Aja, S.M., & Wong, P.C. (2010). Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc Natl Acad Sci U S A, 107, 16320–16324.
  • Crews, L., Spencer, B., Desplats, P., Patrick, C., Paulino, A., Rockenstein, E., et al. (2010). Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PloS One, 5, e9313.
  • Diaper, D.C., Adachi, Y., Sutcliffe, B., Humphrey, D.M., Elliott, C.J., Stepto, A., et al. (2013). Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes. Hum Mol Genet, 22, 1539–1557.
  • Estes, P.S., Boehringer, A., Zwick, R., Tang, J.E., Grigsby, B., & Zarnescu, D.C. (2011). Wild-type and A315T mutant TDP-43 exert differential neurotoxicity in a Drosophila model of ALS. Hum Mol Genet, 20, 2308–2321.
  • Feiguin, F., Godena, V.K., Romano, G., D’Ambrogio, A., Klima, R., & Baralle, F.E. (2009). Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett, 583, 1586–1592.
  • Fiesel, F.C., Voigt, A., Weber, S.S., Van den Haute, C., Waldenmaier, A., Gorner, K., et al. (2010). Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J, 29, 209–221.
  • Fuentealba, R.A., Udan, M., Bell, S., Wegorzewska, I., Shao, J., Diamond, M.I., et al. (2010). Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43. J Biol Chem, 285, 26304–26314.
  • Gendron, T.F., Josephs, K.A., & Petrucelli, L. (2010). Review: transactive response DNA-binding protein 43 (TDP-43): mechanisms of neurodegeneration. Neuropathol Appl Neurobiol, 36, 97–112.
  • Ghavami, S., Shojaei, S., Yeganeh, B., Ande, S.R., Jangamreddy, J.R., Mehrpour, M., et al. (2014). Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol, 112, 24–49.
  • Gijselinck, I., Sleegers, K., Engelborghs, S., Robberecht, W., Martin, J.J., Vandenberghe, R., et al. (2009). Neuronal inclusion protein TDP-43 has no primary genetic role in FTD and ALS. Neurobiol Aging, 30, 1329–1331.
  • Grad, L.I., Fernando, S.M., & Cashman, N.R. (2015). From molecule to molecule and cell to cell: prion-like mechanisms in amyotrophic lateral sclerosis. Neurobiol Dis, 77, 257–265.
  • Gregory, J.M., Barros, T.P., Meehan, S., Dobson, C.M., & Luheshi, L.M. (2012). The aggregation and neurotoxicity of TDP-43 and its ALS-associated 25 kDa fragment are differentially affected by molecular chaperones in Drosophila. PloS One, 7, e31899.
  • Guerreiro, R.J., Schymick, J.C., Crews, C., Singleton, A., Hardy, J., & Traynor, B.J. (2008). TDP-43 is not a common cause of sporadic amyotrophic lateral sclerosis. PloS One, 3, e2450.
  • Hanson, K.A., Kim, S.H., Wassarman, D.A., & Tibbetts, R.S. (2010). Ubiquilin modifies TDP-43 toxicity in a Drosophila model of amyotrophic lateral sclerosis (ALS). J Biol Chem, 285, 11068–11072.
  • Harris, H., & Rubinsztein, D.C. (2012). Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol, 8, 108–117.
  • Hazelett, D.J., Chang, J.C., Lakeland, D.L., & Morton, D.B. (2012). Comparison of parallel high-throughput RNA sequencing between knockout of TDP-43 and its overexpression reveals primarily nonreciprocal and nonoverlapping gene expression changes in the central nervous system of Drosophila. G3 (Bethesda), 2, 789–802.
  • Huang, C., Tong, J., Bi, F., Zhou, H., & Xia, X.G. (2012). Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. J Clin Invest, 122, 107–118.
  • Huang, C.C., Bose, J.K., Majumder, P., Lee, K.H., Huang, J.T., Huang, J.K., & Shen, C.K. (2014). Metabolism and mis-metabolism of the neuropathological signature protein TDP-43. J Cell Sci, 127, 3024–3038.
  • Igaz, L.M., Kwong, L.K., Lee, E.B., Chen-Plotkin, A., Swanson, E., Unger, T., et al. (2011). Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest, 121, 726–738.
  • Iguchi, Y., Katsuno, M., Niwa, J., Takagi, S., Ishigaki, S., Ikenaka, K., et al. (2013). Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. Brain, 136, 1371–1382.
  • Janssens, J., Wils, H., Kleinberger, G., Joris, G., Cuijt, I., Ceuterick-de Groote, C., et al. (2013). Overexpression of ALS-associated p.M337V human TDP-43 in mice worsens disease features compared to wild-type human TDP-43 mice. Mol Neurobiol, 48, 22–35.
  • Joardar, A., Menzl, J., Podolsky, T.C., Manzo, E., Estes, P.S., Ashford, S., & Zarnescu, D.C. (2015). PPAR gamma activation is neuroprotective in a Drosophila model of ALS based on TDP-43. Hum Mol Genet, 24, 1741–1754.
  • Kim, H.J., Raphael, A.R., LaDow, E.S., McGurk, L., Weber, R.A., Trojanowski, J.Q., et al. (2014). Therapeutic modulation of eIF2alpha phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet, 46, 152–160.
  • Kim, S.H., Shi, Y., Hanson, K.A., Williams, L.M., Sakasai, R., Bowler, M.J., & Tibbetts, R.S. (2009). Potentiation of amyotrophic lateral sclerosis (ALS)-associated TDP-43 aggregation by the proteasome-targeting factor, ubiquilin 1. J Biol Chem, 284, 8083–8092.
  • Kuo, P.H., Doudeva, L.G., Wang, Y.T., Shen, C.K., & Yuan, H.S. (2009). Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res, 37, 1799–1808.
  • Lacin, H., Zhu, Y., Wilson, B.A., & Skeath, J.B. (2014). Transcription factor expression uniquely identifies most postembryonic neuronal lineages in the Drosophila thoracic central nervous system. Development, 141, 1011–1021.
  • Lattante, S., Rouleau, G.A., & Kabashi, E. (2013). TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat, 34, 812–826.
  • Li, Y., Ray, P., Rao, E.J., Shi, C., Guo, W., Chen, X., et al. (2010). A Drosophila model for TDP-43 proteinopathy. Proc Natl Acad Sci U S A, 107, 3169–3174.
  • Liachko, N.F., Guthrie, C.R., & Kraemer, B.C. (2010). Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J Neurosci, 30, 16208–16219.
  • Lin, M.J., Cheng, C.W., & Shen, C.K. (2011). Neuronal function and dysfunction of Drosophila dTDP. PloS One, 6, e20371.
  • Ling, S.C., Albuquerque, C.P., Han, J.S., Lagier-Tourenne, C., Tokunaga, S., Zhou, H., & Cleveland, D.W. (2010). ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci U S A, 107, 13318–13323.
  • Ling, S.C., Polymenidou, M., & Cleveland, D.W. (2013). Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron, 79, 416–438.
  • Logroscino, G., Traynor, B.J., Hardiman, O., Chio, A., Mitchell, D., Swingler, R.J., et al. (2010). Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry, 81, 385–390.
  • Lu, Y., Ferris, J., & Gao, F.B. (2009). Frontotemporal dementia and amyotrophic lateral sclerosis-associated disease protein TDP-43 promotes dendritic branching. Mol Brain, 2, 30.
  • Mackenzie, I.R., Bigio, E.H., Ince, P.G., Geser, F., Neumann, M., Cairns, N.J., et al. (2007). Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol, 61, 427–434.
  • Mackenzie, I.R., Rademakers, R., & Neumann, M. (2010). TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol, 9, 995–1007.
  • Mizushima, N. (2007). Autophagy: process and function. Genes Dev, 21, 2861–2873.
  • Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., et al. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314, 130–133.
  • Odden, J.P., Holbrook, S., & Doe, C.Q. (2002). Drosophila HB9 is expressed in a subset of motoneurons and interneurons, where it regulates gene expression and axon pathfinding. J Neurosci, 22, 9143–9149.
  • Ou, S.H., Wu, F., Harrich, D., Garcia-Martinez, L.F., & Gaynor, R.B. (1995). Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol, 69, 3584–3596.
  • Pircs, K., Nagy, P., Varga, A., Venkei, Z., Erdi, B., Hegedus, K., & Juhasz, G. (2012). Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila. PloS One, 7, e44214.
  • Polymenidou, M., Lagier-Tourenne, C., Hutt, K.R., Huelga, S.C., Moran, J., Liang, T.Y., et al. (2011). Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci, 14, 459–468.
  • Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., et al. (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet, 36, 585–595.
  • Renton, A.E., Chio, A., & Traynor, B.J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci, 17, 17–23.
  • Rowland, L.P., & Shneider, N.A. (2001). Amyotrophic lateral sclerosis. N Engl J Med, 344, 1688–1700.
  • Salado, I.G., Redondo, M., Bello, M.L., Perez, C., Liachko, N.F., Kraemer, B.C., et al. (2014). Protein kinase CK-1 inhibitors as new potential drugs for amyotrophic lateral sclerosis. J Med Chem, 57, 2755–2772.
  • Sarkar, S., Perlstein, E.O., Imarisio, S., Pineau, S., Cordenier, A., Maglathlin, R.L., et al. (2007). Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol, 3, 331–338.
  • Spilman, P., Podlutskaya, N., Hart, M.J., Debnath, J., Gorostiza, O., Bredesen, D., et al. (2010). Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PloS One, 5, e9979.
  • Strong, M.J., Volkening, K., Hammond, R., Yang, W., Strong, W., Leystra-Lantz, C., & Shoesmith, C. (2007). TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci, 35, 320–327.
  • Tatom, J.B., Wang, D.B., Dayton, R.D., Skalli, O., Hutton, M.L., Dickson, D.W., & Klein, R.L. (2009). Mimicking aspects of frontotemporal lobar degeneration and Lou Gehrig's disease in rats via TDP-43 overexpression. Mol Ther, 17, 607–613.
  • Tollervey, J.R., Curk, T., Rogelj, B., Briese, M., Cereda, M., Kayikci, M., et al. (2011). Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci, 14, 452–458.
  • Tooze, S.A., & Schiavo, G. (2008). Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration. Curr Opin Neurobiol, 18, 504–515.
  • Tsai, K.J., Yang, C.H., Fang, Y.H., Cho, K.H., Chien, W.L., Wang, W.T., et al. (2010). Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med, 207, 1661–1673.
  • Uchida, A., Sasaguri, H., Kimura, N., Tajiri, M., Ohkubo, T., Ono, F., et al. (2012). Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43. Brain, 135, 833–846.
  • Vaccaro, A., Tauffenberger, A., Aggad, D., Rouleau, G., Drapeau, P., & Parker, J.A. (2012). Mutant TDP-43 and FUS cause age-dependent paralysis and neurodegeneration in C. elegans. PloS One, 7, e31321.
  • Van Langenhove, T., van der Zee, J., & Van Broeckhoven, C. (2012). The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med, 44, 817–828.
  • Voigt, A., Herholz, D., Fiesel, F.C., Kaur, K., Muller, D., Karsten, P., et al. (2010). TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PloS one, 5, e12247.
  • Wang, H.Y., Wang, I.F., Bose, J., & Shen, C.K. (2004). Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics, 83, 130–139.
  • Wang, I.F., Guo, B.S., Liu, Y.C., Wu, C.C., Yang, C.H., Tsai, K.J., & Shen, C.K. (2012). Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci U S A, 109, 15024–15029.
  • Wang, I.F., Tsai, K.J., & Shen, C.K. (2013). Autophagy activation ameliorates neuronal pathogenesis of FTLD-U mice: a new light for treatment of TARDBP/TDP-43 proteinopathies. Autophagy, 9, 239–240.
  • Wang, I.F., Wu, L.S., Chang, H.Y., & Shen, C.K. (2008a). TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem, 105, 797–806.
  • Wang, I.F., Wu, L.S., & Shen, C.K. (2008b). TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med, 14, 479–485.
  • Watson, M.R., Lagow, R.D., Xu, K., Zhang, B., & Bonini, N.M. (2008). A drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1. J Biol Chem, 283, 24972–24981.
  • Wegorzewska, I., Bell, S., Cairns, N.J., Miller, T.M., & Baloh, R.H. (2009). TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A, 106, 18809–18814.
  • Wils, H., Kleinberger, G., Janssens, J., Pereson, S., Joris, G., Cuijt, I., et al. (2010). TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A, 107, 3858–3863.
  • Wu, L.S., Cheng, W.C., Hou, S.C., Yan, Y.T., Jiang, S.T., & Shen, C.K. (2010). TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis, 48, 56–62.
  • Wu, L.S., Cheng, W.C., & Shen, C.K. (2012). Targeted depletion of TDP-43 expression in the spinal cord motor neurons leads to the development of amyotrophic lateral sclerosis-like phenotypes in mice. J Biol Chem, 287, 27335–27344.
  • Xu, Y.F., Gendron, T.F., Zhang, Y.J., Lin, W.L., D’Alton, S., Sheng, H., et al. (2010). Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci, 30, 10851–10859.
  • Zhang, X., Li, L., Chen, S., Yang, D., Wang, Y., Wang, Z., & Le, W. (2011). Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy, 7, 412–425.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.