590
Views
12
CrossRef citations to date
0
Altmetric
REVIEW

Animal models in chronic obstructive pulmonary disease—an overview

, , , , &
Pages 259-271 | Received 27 Jan 2014, Accepted 21 Mar 2014, Published online: 02 May 2014

REFERENCES

  • GOLD: Global strategy for the diagnosis, management and prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease; 2013. Available from: http://www. goldcopd.org/.
  • Dance A: Health impact: breathless. Nature. 2012;489 (7417):S2–S3.
  • Russi EW, Karrer W, Brutsche M, Eich C, Fitting JW, Frey M, Geiser T, Kuhn M, Nicod L, Quadri F, Rochat T, Steurer-Stey C, Stolz D: Swiss Respiratory Society: Diagnosis and management of chronic obstructive pulmonary disease: the Swiss guidelines. Official guidelines of the Swiss Respiratory Society. Respiration. 2013;85(2):160–174.
  • Murray CJ, Lopez AD: Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet. 1997;349(9061):1269–1276.
  • Lopez AD, Murray CC: The global burden of disease, 1990–2020. Nat Med. 1998;4(11):1241–1243.
  • Lopez AD, Shibuya K, Rao C, Mathers CD, Hansell AL, Held LS, Schmid V, Buist S: Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J. 2006;27(2):397–412.
  • Mannino DM, Buist AS: Global burden of COPD: risk factors, prevalence, and future trends. Lancet. 2007;370 (9589):765–773.
  • Ribeiro-Paes JT, Bilaqui A, Greco OT, Ruiz MA, Alves-de-Moraes LBC, Faria CA, Stessuk T: Cell therapy in pulmonary diseases: are there perspectives? Rev Bras Hematol Hemoter. 2009;31(1):140–148.
  • Faria CA, de las Heras Kozma R, Stessuk T, Ribeiro-Paes JT: Experimental basis and new insights for cell therapy in chronic obstructive pulmonary disease. Stem Cell Rev. 2012;8(4):1236–1244.
  • Hackett TL, Scarci M, Zheng L, Tan W, Treasure T, Warner JA: Oxidative modification of albumin in the parenchymal lung tissue of current smokers with chronic obstructive pulmonary disease. Respir Res. 2010;11(1):180–190.
  • Lucattelli M, Cicko S, Müller T, Lommatzsch M, De Cunto G, Cardini S, Sundas W, Grimm M, Zeiser R, Dürk T, Zissel G, Sorichter S, Ferrari D, Di Virgilio F, Virchow JC, Lungarella G, Idzko M: P2×7 receptor signaling in the pathogenesis of smoke-induced lung inflammation and emphysema. Am J Respir Cell Mol Biol. 2011;44(3):423–429.
  • Mortaz E, Folkerts G, Nijkamp FP, Henricks PA: ATP and the pathogenesis of COPD. Eur J Pharmacol. 2010;638(1–3):1–4.
  • Sueblinvong V, Weiss DJ: Stem cells and cell therapy approaches in lung biology and diseases. Transl Res. 2010; 156(3):188–205.
  • Mannino DM: The natural history of chronic obstructive pulmonary disease. Pneumonol Alergol Pol. 2011;79(2):139–143.
  • Ribeiro-Paes JT, Stessuk T, Kozma RLH: Cell therapy in chronic obstructive pulmonary disease: state of the art and perspectives. In: Kianb-Chungong, ed. Chronic Obstructive Pulmonary Disease –Current Concepts and Practice. Rijeka, Croatia: InTech; 2012:455–474.
  • Rufino R, Lapa e Silva JR: Bases celulares e bioquímicas da doença pulmonar obstrutiva crônica. J Brasileiro de Pneumologia. 2006;32(3):241–248.
  • Zhang X, Zheng H, Zhang H, Ma W, Wang F, Liu C, He S: Increased interleukin (IL)-8 and decreased IL-17 production in chronic obstructive pulmonary disease (COPD) provoked by cigarette smoke. Cytokine. 2011;56(3):717–725.
  • Lee J, Sandford A, Man P, Sin DD: Is the aging process accelerated in chronic obstructive pulmonary disease? Curr Opin Pulm Med. 2011;17(2):90–97.
  • Kuhn C, Yu SY, Chraplyvy M, Linder HE, Senior RM: The induction of emphysema with elastase. II. Changes in connective tissue. Lab Invest. 1976;34(4):372–380.
  • Snider GL, Lucey EC, Stone PJ: Animal models of emphysema. Am Rev Respir Dis. 1986;133(1):149–169.
  • Plataki M, Tzortzaki E, Rytila P, Demosthenes M, Koutsopoulos A, Siafakas NM: Apoptotic mechanisms in the pathogenesis of COPD. Int J Chron Obstruct Pulmon Dis. 2006;1(2):161–171.
  • Stockley RA, Mannino D, Barnes PJ: Burden and pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6(6):524–526.
  • Neofytou E, Tzortzaki EG, Chatziantoniou A, Siafakas NM: DNA damage due to oxidative stress in chronic obstructive pulmonary disease (COPD). Int J Mol Sci. 2012;13(12):16853–16864.
  • Tavilani H, Nadi E, Karimi J, Goodarzi MT: Oxidative stress in COPD patients, smokers, and non-smokers. Respir Care. 2012;57(12):2090–2094.
  • Vlahos R, Bozinovski S: Recent advances in pre-clinical mouse models of COPD. Clin Sci (Lond). 2014;126(4):253–265.
  • Gross P, Pfitzer EA, Tolker E, Babyak MA, Kaschak M: Experimental emphysema: its production with papain in normal and silicotic rats. Arch Environ Health. 1965;11:50–58.
  • Mercer JF, Grimes A, Ambrosini L, Lockhart P, Paynter JA, Dierick H, Glover TW: Mutations in the murine homologue of the Menkes gene in dappled and blotchy mice. Nat Genet. 1994;6(4):374–378.
  • Lucey EC, Goldstein RH, Stone PJ, Snider GL: Remodeling of alveolar walls after elastase treatment of hamsters. Results of elastin and collagen mRNA in situ hybridization. Am J Respir Crit Care Med. 1998;158(2):555–564.
  • Houghton AM, Quintero PA, Perkins DL, Kobayashi DK, Kelley DG, Marconcini LA, Mecham RP, Senior RM, Shapiro SD: Elastin fragments drive disease progression in a murine model of emphysema. J Clin Invest. 2006;116(3):753–759.
  • Christensen TG, Korthy AL, Snider GL, Hayes JA: Irreversible bronchial goblet cell metaplasia in hamsters with elastase-induced panacinar emphysema. J Clin Invest. 1977;59(3):397–404.
  • Fox JC, Fitzgerald MF: Models of chronic obstructive pulmonary disease: a review of current status. Drug Discov Today: Disease Models. 2004;1(3):319–328.
  • March TH, Green FH, Hahn FF, Nikula KJ: Animal models of emphysema and their relevance to studies of particle-induced disease. Inhal Toxicol. 2000;12(suppl 4):155–187.
  • Churg A, Cosio M, Wright JL: Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol. 2008;294(4):L612–L631.
  • Antunes MA, Rocco PR: Elastase-induced pulmonary emphysema: insights from experimental models. An Acad Bras Cienc. 2011;83(4):1385–1396.
  • Shapiro SD: Animal models for COPD. Chest. 2000;117 (5 suppl 1):223S–227S.
  • Wright JL, Cosio M, Churg A: Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L1–L15.
  • Fujita M, Nakanishi Y: The pathogenesis of COPD: lessons learned from in vivo animal models. Med Sci Monit. 2007;13(2):RA19–RA24.
  • Fusco LB, Pego-Fernandes PM, Xavier AM, Pazetti R, Rivero DHRF, Capelozzi VL, Jatene FB: Modelo experimental de enfisema pulmonar em ratos induzido por papaina. J Penumol. 2002;28:1–7.
  • Longhini-Dos-Santos N, Barbosa-de-Oliveira VA, Kozma RH, Faria CA, Stessuk T, Frei F, Ribeiro-Paes JT: Cell therapy with bone marrow mononuclear cells in elastase-induced pulmonary emphysema. Stem Cell Rev. 2013;9(2):210–218.
  • Laurell CB, Erickson S: The electrophoretic alpha-1 deficiency. Scand J Clin Lab Invest. 1963;15:32–40.
  • Kawakami M, Matsuo Y, Yoshiura K, Nagase T, Yamashita N: Sequential and quantitative analysis of a murine model of elastase-induced emphysema. Biol Pharm Bull. 2008;31(7):1434–1438.
  • Janoff A: Elastases and emphysema. Current assessment of the protease-antiprotease hypothesis. Am Rev Respir Dis. 1985;132(2):417–433.
  • Senior RM, Tegner H, Kuhn C, Ohlsson K, Starcher BC, Pierce JA: The induction of pulmonary emphysema with human leukocyte elastase. Am Rev Respir Dis. 1977;116(3):469–475.
  • Kao RC, Wehner NG, Skubitz KM, Gray BH, Hoidal JR: Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J Clin Invest. 1988l;82(6):1963–1973.
  • Lüthje L, Raupach T, Michels H, Unsöld B, Hasenfuss G, Kögler H, Andreas S: Exercise intolerance and systemic manifestations of pulmonary emphysema in a mouse model. Respir Res. 2009;28(10):7.
  • Nishi Y, Boswell V, Ansari T, Piprawala F, Satchi S, Page CP: Elastase-induced changes in lung function: relationship to morphometry and effect of drugs. Pulm Pharmacol Ther. 2003;16(4):221–229.
  • Lucey EC, Keane J, Kuang PP, Snider GL, Goldstein RH: Severity of elastase-induced emphysema is decreased in tumor necrosis factor-alpha and interleukin-1beta receptor-deficient mice. Lab Invest. 2002;82(1):79–85.
  • Bellofiore S, Eidelman DH, Macklem PT, Martin JG: Effects of elastase-induced emphysema on airway responsiveness to methacholine in rats. J Appl Physiol. 1989;66(2):606–612.
  • Birrell MA, Wong S, Hele DJ, McCluskie K, Hardaker E, Belvisi MG: Steroid-resistant inflammation in a rat model of chronic obstructive pulmonary disease is associated with a lack of nuclear factor-kappaB pathway activation. Am J Respir Crit Care Med. 2005;172(1):74–84.
  • Scuri M, Forteza R, Lauredo I, Sabater JR, Botvinnikova Y, Allegra L, Abraham WM: Inhaled porcine pancreatic elastase causes bronchoconstriction via a bradykinin-mediated mechanism. J Appl Physiol. 2000;89(4):1397–1402.
  • Cendon S, Battlehner C, Lorenzi-Filho G, Dohlnikoff M, Pereira P, Conceição G, Beppu OS, Saldiva PH: Pulmonary emphysema induced by passive smoking: an experimental study in rats. Braz J Med Biol Res. 1997;30:1241–1247.
  • Zheng H, Liu Y, Huang T, Fang Z, Li G, He S: Development and characterization of a rat model of chronic obstructive pulmonary disease (COPD) induced by sidestream cigarette smoke. Toxicol Lett. 2009;189(3):225–234.
  • Toledo AC, Magalhaes RM, Hizume DC, Vieira RP, Biselli PJ, Moriya HT, Mauad T, Lopes FD, Martins MA: Aerobic exercise attenuates pulmonary injury induced by exposure to cigarette smoke. Eur Respir J. 2012;39(2):254–264.
  • Manis JP: Knock out, knock in, knock down—genetically manipulated mice and the Nobel Prize. N Engl J Med. 2007;357(24):2426–2429.
  • Brusselle GG, Bracke KR, Maes T, D'hulst AI, Moerloose KB, Joos GF, Pauwels RA: Murine models of COPD. Pulm Pharmacol Ther. 2006;19(3):155–165.
  • Baron RM, Choi AJ, Owen CA, Choi AM: Genetically manipulated mouse models of lung disease: potential and pitfalls. Am J Physiol Lung Cell Mol Physiol. 2012;302(6):L485–L497.
  • Vlahos R, Bozinovski S, Gualano RC, Ernst M, Anderson GP: Modelling COPD in mice. Pulm Pharmacol Ther. 2006;19(1):12–17.
  • Stevenson CS, Birrell MA: Moving towards a new generation of animal models for asthma and COPD with improved clinical relevance. Pharmacol Ther. 2011;130(2):93–105.
  • Berndt A, Leme AS, Shapiro SD: Emerging genetics of COPD. EMBO Mol Med. 2012;4(11):1144–1155.
  • Dawkins JL, Hulme DJ, Brahmbhatt SB, Auer-Grumbach M, Nicholson GA: Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat Genet. 2001;27(3):309–312.
  • Mahadeva R, Shapiro SD: Chronic obstructive pulmonary disease * 3: experimental animal models of pulmonary emphysema. Thorax. 2002;57(10):908–914.
  • Namati JT: Phenotype characterization of lung structure in inbred mouse strains using multi modal imaging techniques. PhD dissertation, University of Iowa, 2009. Available from: http://ir.uiowa.edu/etd/256.
  • Wan ES, Silverman EK: Genetics of COPD and emphysema. Chest. 2009;136(3):859–866.
  • Adamson J, Haswell LE, Phillips G, Gaça MD: In vitro models of chronic obstructive pulmonary disease (COPD). In: Martin-Loeches I, ed. Bronchitis Croatia: In Tech; 2011. ISBN: 978-953-307-889-2. DOI:10.5772/18247. Available from: http:// www.intechopen.com/books/howtoreference/bronchitis/in-vit ro-models-of-chronic-obstructive-pulmonary-disease-copd-.
  • Adil R, Latief MD, Firdous AD: Animal models for diseases of respiratory system. Sci J Rev. 2012;1(1):1–7.
  • Zhang Y: Applications of gene targeting in the investigations of human airway diseases. Clon Transgen. 2013;2(1):103.
  • Tuder RM, McGrath S, Neptune E: The pathobiological mechanisms of emphysema models: what do they have in common? Pulm Pharmacol Ther. 2003;16(2):67–78.
  • Velden JV, Snibson KJ: Airway disease: the use of large animal models for drug discovery. Pulm Pharmacol Ther. 2011;24(5):525–532.
  • Wright JL, Churg A: Animal models of cigarette smoke-induced chronic obstructive pulmonary disease. Expert Rev Respir Med. 2010;4(6):723–734.
  • Hele D: First Siena International Conference on animal models of chronic obstructive pulmonary disease, Certosa di Pontignano, University of Siena, Italy, September 30–October 2, 2001. Respir Res. 2002;3:12.
  • Huber GL, Davies P, Zwilling GR, Pochay VE, Hinds WC, Nicholas HA, Mahajan VK, Hayashi M, First MW: A morphologic and physiologic bioassay for quantifying alterations in the lung following experimental chronic inhalation of tobacco smoke. Bull Eur Physiopathol Respir. 1981;17(2):269–327.
  • Xu L, Cai BQ, Zhu YJ: Pathogenesis of cigarette smoke-induced chronic obstructive pulmonary disease and therapeutic effects of glucocorticoids and N-acetylcysteine in rats. Chin Med J (Engl). 2004;117(11):1611–1619.
  • Huh JW, Kim SY, Lee JH, Lee JS, Van Ta Q, Kim M, Oh YM, Lee YS, Lee SD: Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am J Physiol Lung Cell Mol Physiol. 2011;301(3):L255–L266.
  • Rinaldi M, Maes K, De Vleeschauwer S, Thomas D, Verbeken EK, Decramer M, Janssens W, Gayan-Ramirez GN: Long-term nose-only cigarette smoke exposure induces emphysema and mild skeletal muscle dysfunction in mice. Dis Model Mech. 2012;5(3):333–341.
  • Bracke KR, D'hulst AI, Maes T, Moerloose KB, Demedts IK, Lebecque S, Joos GF, Brusselle GG: Cigarette smoke-induced pulmonary inflammation and emphysema are attenuated in CCR6-deficient mice. J Immunol. 2006;177:4350–4359.
  • Guerassimov A, Hoshino M, Takubo Y, Turcotte A, Yamamoto M, Ghezzo H, Triantafillopoulos A, Whittaker K, Hoidal JR, Cosio MG: The development of emphysema in cigarette smoke-exposed mice is strain dependent. Am J Respir Crit Care Med. 2004;170:974–980.
  • Maeno T, Houghton AM, Quintero PA, Grumelli S, Owen CA, Shapiro SD: CD8+ T cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol. 2007;178(12):8090–8096.
  • Gosker HR, Langen RC, Bracke KR, Joos GF, Brusselle GG, Steele C, Ward KA, Wouters EF, Schols AM: Extrapulmonary manifestations of chronic obstructive pulmonary disease in a mouse model of chronic cigarette smoke exposure. Am J Respir Cell Mol Biol. 2009;40(6):710–716.
  • Schweitzer KS, Hatoum H, Brown MB, Gupta M, Justice MJ, Beteck B, Van Demark M, Gu Y, Presson RG Jr, Hubbard WC, Petrache I: Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides. Am J Physiol Lung Cell Mol Physiol. 2011;301(6):L836–L846.
  • Churg A, Sin DD, Wright JL: Everything prevents emphysema: are animal models of cigarette smoke-induced chronic obstructive pulmonary disease any use? Am J Respir Cell Mol Biol. 2011;45(6):1111–1115.
  • Li Y, Li SY, Li JS, Deng L, Tian YG, Jiang SL, Wang Y, Wang YY: A rat model for stable chronic obstructive pulmonary disease induced by cigarette smoke inhalation and repetitive bacterial infection. Biol Pharm Bull. 2012;35(10):1752–1760.
  • Kozma RH, Alves EM, Barbosa-de-Oliveira VA, Lopes FDTQS, Guardia R, Buzo HV, Faria CA, Yamashita C, Junior MC, Frei F, Ribeiro-Paes MJO, Ribeiro-Paes JT: A new model of cigarette smoke-induced pulmonary emphysema. Wistar Rats Jor Bras Peneumol. 2014;40(1):46–54.
  • Churg A, Wright JL: Proteases and emphysema. Curr Opin Pulm Med. 2005;11(2):153–159.
  • Motz GT, Eppert BL, Sun G, Wesselkamper SC, Linke MJ, Deka R, Borchers MT: Persistence of lung CD8 T cell oligoclonal expansions upon smoking cessation in a mouse model of cigarette smoke-induced emphysema. J Immunol. 2008;181(11):8036–8043.
  • Gayraud B, Keene DR, Sakai LY, Ramirez F: New insights into the assembly of extracellular microfibrils from the analysis of the fibrillin 1 mutation in the tight skin mouse. J Cell Biol. 2000;150(3):667–680.
  • Keil M, Lungarella G, Cavarra E, van Even P, Martorana PA: A scanning electron microscopic investigation of genetic emphysema in tight-skin, pallid, and beige mice, three different C57 BL/6J mutants. Lab Invest. 1996;74(2):353–362.
  • Calvi C, Podowski M, Lopez-Mercado A, Metzger S, Misono K, Malinina A, Dikeman D, Poonyagariyon H, Ynalvez L, Derakhshandeh R, Le A, Merchant M, Schwall R, Neptune ER: Hepatocyte growth factor, a determinant of airspace homeostasis in the murine lung. PLoS Genet. 2013;9(2):e1003228.
  • Wang D, Wang W, Dawkins P, Paterson T, Kalsheker N, Sallenave JM, Houghton AM: Deletion of Serpina1a, a murine α1-antitrypsin ortholog, results in embryonic lethality. Exp Lung Res. 2011;37(5):291–300.
  • Barbosa MD, Nguyen QA, Tchernev VT, Ashley JA, Detter JC, Blaydes SM, Brandt SJ, Chotai D, Hodgman C, Solari RC, Lovett M, Kingsmore SF: Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature. 1996;382(6588):262–265. Erratum in: Nature. 1997;385 (6611):97.
  • Starcher B, Williams I: The beige mouse: role of neutrophil elastase in the development of pulmonary emphysema. Exp Lung Res. 1989;15(5):785–800.
  • Fisk DE, Kuhn C: Emphysema-like changes in the lungs of the blotchy mouse. Am Rev Respir Dis. 1976;113(6):787–797.
  • Huang L, Kuo YM, Gitschier J: The pallid gene encodes a novel, syntaxin 13-interacting protein involved in platelet storage pool deficiency. Nat Genet. 1999;23(3):329–332.
  • McGowan S, Jackson SK, Jenkins-Moore M, Dai HH, Chambon P, Snyder JM: Mice bearing deletions of retinoic acid receptors demonstrate reduced lung elastin and alveolar numbers. Am J Respir Cell Mol Biol. 2000;23(2):162–167.
  • Gudas LJ: Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim Biophys Acta. 2012;1821(1):213–221.
  • Lindahl P, Karlsson L, Hellström M, Gebre-Medhin S, Willetts K, Heath JK, Betsholtz C: Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development. 1997;124(20):3943–3953.
  • Morrisey EE, Hogan BL: Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18(1):8–23.
  • Weinstein M, Xu X, Ohyama K, Deng CX: FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development. 1998;125(18):3615–3623.
  • Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, Cheng CF, Kobuke K, Dalton N, Takada Y, Tashiro K, Ross J Jr, Honjo T, Chien KR: Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature. 2002;415(6868):171–175.
  • Noda K, Dabovic B, Takagi K, Inoue T, Horiguchi M, Hirai M, Fujikawa Y, Akama TO, Kusumoto K, Zilberberg L, Sakai LY, Koli K, Naitoh M, von Melchner H, Suzuki S, Rifkin DB, Nakamura T: Latent TGF-β binding protein 4 promotes elastic fiber assembly by interacting with fibulin-5. Proc Natl Acad Sci USA. 2013;110(8):2852–2857.
  • Wendel DP, Taylor DG, Albertine KH, Keating MT, Li DY: Impaired distal airway development in mice lacking elastin. Am J Respir Cell Mol Biol. 2000;23(3):320–326.
  • Rock JR, Hogan BL: Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol. 2011;27:493–512.
  • Zhao J, Chen H, Peschon JJ, Shi W, Zhang Y, Frank SJ, Warburton D: Pulmonary hypoplasia in mice lacking tumor necrosis factor-alpha converting enzyme indicates an indispensable role for cell surface protein shedding during embryonic lung branching morphogenesis. Dev Biol. 2001;232(1):204–218.
  • Shiomi T, Tschumperlin DJ, Park JA, Sunnarborg SW, Horiuchi K, Blobel CP, Drazen JM: TNF-α-converting enzyme/a disintegrin and metalloprotease-17 mediates mechanotransduction in murine tracheal epithelial cells. Am J Respir Cell Mol Biol. 2011;45(2):376–385.
  • Blackburn MR, Volmer JB, Thrasher JL, Zhong H, Crosby JR, Lee JJ, Kellems RE: Metabolic consequences of adenosine deaminase deficiency in mice are associated with defects in alveogenesis, pulmonary inflammation, and airway obstruction. J Exp Med. 2000;192(2):159–170.
  • Booth C, Algar VE, Xu-Bayford J, Fairbanks L, Owens C, Gaspar HB: Non-infectious lung disease in patients with adenosine deaminase deficient severe combined immunodeficiency. J Clin Immunol. 2012;32(3):449–453.
  • Leco KJ, Waterhouse P, Sanchez OH, Gowing KL, Poole AR, Wakeham A, Mak TW, Khokha R: Spontaneous air space enlargement in the lungs of mice lacking tissue inhibitor of metalloproteinases-3 (TIMP-3). J Clin Invest. 2001;108(6):817–829. Erratum in: J Clin Invest. 2001;108(9):1405.
  • Brew K, Nagase H: The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010;1803(1):55–71.
  • Wert SE, Yoshida M, LeVine AM, Ikegami M, Jones T, Ross GF, Fisher JH, Korfhagen TR, Whitsett JA: Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci USA. 2000;97(11):5972–5977.
  • Aono Y, Ledford JG, Mukherjee S, Ogawa H, Nishioka Y, Sone S, Beers MF, Noble PW, Wright JR: Surfactant protein-D regulates effector cell function and fibrotic lung remodeling in response to bleomycin injury. Am J Respir Crit Care Med. 2012;185(5):525–536.
  • Hoyle GW, Li J, Finkelstein JB, Eisenberg T, Liu JY, Lasky JA, Athas G, Morris GF, Brody AR: Emphysematous lesions, inflammation, and fibrosis in the lungs of transgenic mice overexpressing platelet-derived growth factor. Am J Pathol. 1999;154(6):1763–1775.
  • Mejía M, Carrillo G, Rojas-Serrano J, Estrada A, Suárez T, Alonso D, Barrientos E, Gaxiola M, Navarro C, Selman M: Idiopathic pulmonary fibrosis and emphysema: decreased survival associated with severe pulmonary arterial hypertension. Chest. 2009;136(1):10–15.
  • Shiomi T, Okada Y, Foronjy R, Schiltz J, Jaenish R, Krane S, D'Armiento J: Emphysematous changes are caused by degradation of type III collagen in transgenic mice expressing MMP-1. Exp Lung Res. 2003;29(1):1–15.
  • Geraghty P, Dabo AJ, D'Armiento J: TLR4 protein contributes to cigarette smoke-induced matrix metalloproteinase-1 (MMP-1) expression in chronic obstructive pulmonary disease. J Biol Chem. 2011;286(34):30211–30218.
  • Tsao PN, Su YN, Li H, Huang PH, Chien CT, Lai YL, Lee CN, Chen CA, Cheng WF, Wei SC, Yu CJ, Hsieh FJ, Hsu SM: Overexpression of placenta growth factor contributes to the pathogenesis of pulmonary emphysema. Am J Respir Crit Care Med. 2004;169(4):505–511.
  • Sands M, Howell K, Costello CM, McLoughlin P: Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung. Respir Res. 2011;12:17.
  • Zheng T, Zhu Z, Wang Z, Homer RJ, Ma B, Riese RJ Jr, Chapman HA Jr, Shapiro SD, Elias JA: Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest. 2000;106(9):1081–1093.
  • Yao H, Rahman I: Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol. 2011;254(2):72–85.
  • Wang Z, Zheng T, Zhu Z, Homer RJ, Riese RJ, Chapman HA Jr, Shapiro SD, Elias JA: Interferon gamma induction of pulmonary emphysema in the adult murine lung. J Exp Med. 2000;192(11):1587–1600.
  • Freeman CM, Martinez FJ, Han MK, Washko GR Jr, McCubbrey AL, Chensue SW, Arenberg DA, Meldrum CA, McCloskey L, Curtis JL: Lung CD8+ T cells in COPD have increased expression of bacterial TLRs. Respir Res. 2013;1:14–13.
  • Vuillemenot BR, Rodriguez JF, Hoyle GW: Lymphoid tissue and emphysema in the lungs of transgenic mice inducibly expressing tumor necrosis factor-alpha. Am J Respir Cell Mol Biol. 2004;30(4):438–448.
  • Matera MG, Calzetta L, Cazzola M: TNF-alpha inhibitors in asthma and COPD: we must not throw the baby out with the bath water. Pulm Pharmacol Ther. 2010;23(2):121–128.
  • Adair-Kirk TL, Atkinson JJ, Griffin GL, Watson MA, Kelley DG, DeMello D, Senior RM, Betsuyaku T: Distal airways in mice exposed to cigarette smoke: Nrf2-regulated genes are increased in Clara cells. Am J Respir Cell Mol Biol. 2008;39(4):400–411.
  • Gan G, Hu R, Dai A, Tan S, Ouyang Q, Fu D, Jiang D: The role of endoplasmic reticulum stress in emphysema results from cigarette smoke exposure. Cell Physiol Biochem. 2011;28(4):725–732.
  • Nemmar A, Raza H, Yuvaraju P, Beegam S, John A, Yasin J, Hameed RS, Adeghate E, Ali BH: Nose-only water-pipe smoking effects on airway resistance, inflammation and oxidative stress in mice. J Appl Physiol. 2013;115(9):1316–1323.
  • Shan M, Yuan X, Song LZ, Roberts L, Zarinkamar N, Seryshev A, Zhang Y, Hilsenbeck S, Chang SH, Dong C, Corry DB, Kheradmand F: Cigarette smoke induction of osteopontin (SPP1) mediates T(H)17 inflammation in human and experimental emphysema. Sci Transl Med. 2012;4:117–119.
  • Tomoda K, Kubo K, Asahara T, Nomoto K, Nishii Y, Yamamoto Y, Yoshikawa M, Kimura H: Suppressed anti-oxidant capacity due to a cellulose-free diet declines further by cigarette smoke in mice. J Toxicol Sci. 2012;37(3):575–585.
  • Xue Y, Haub MD, Smith BW, Baybutt RC: Decreases in bone mineral content by dietary all-trans retinoic acid precede decreases in bone mineral density in a weanling rat model of cigarette smoke-induced lung injuries. Int J Vitam Nutr Res. 2011;81(1):5–11.
  • Zhou Y, Tan X, Kuang W, Liu L, Wan L: Erythromycin ameliorates cigarette-smoke-induced emphysema and inflammation in rats. Transl Res. 2012;159(6):464–472.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.