157
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Physico-chemical characterisation, cytotoxic activity, and biocompatibility studies of tamoxifen-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification method

, , , &
Pages 590-599 | Received 13 Aug 2013, Accepted 17 Feb 2014, Published online: 03 Apr 2014

References

  • Abbasalipourkabir R, Salehzadeh A, Abdullah R. Delivering tamoxifen within solid lipid nanoparticles. Pharmaceut Technol, 2011;35:74–80
  • Allison SD, Molina MC, Anchordoquy TJ. Stabilization of lipid/DNA complexes during the freezing step of the lyophilization process: The particle isolation hypothesis. Biochim Biophys Acta, 2000;1468:127–38
  • Altankov G, Richau K, Groth T. The role of surface zeta potential and substratum chemistry for regulation of dermal fibroblasts interaction. Materialwissenschaft und Werkstofftechnik, 2003;34:1120–8
  • Bae KH, Lee JY, Lee SH, Park TG, Nam YS. Cancer therapy: Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging (Adv. Healthcare Mater. 4/2013). Adv Healthcare Mater, 2013a;2:513
  • Bae KH, Lee JY, Lee SH, Park TG, Nam YS. Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging. Adv Healthcare Mater, 2013b;2:576–84
  • Baydoun L, Muller-Goymann CC. Influence of n-octenylsuccinate starch on in vitro permeation of sodium diclofenac across excised porcine cornea in comparison to Voltaren ophtha. Eur J Pharm Biopharm, 2003;56:73–9
  • Bildstein L, Hillaireau H, Desmaele D, Lepetre-Mouelhi S, Dubernet C, Couvreur P. Freeze-drying of squalenoylated nucleoside analogue nanoparticles. Int J Pharm, 2009;381:140–5
  • Brigger I, Chaminade P, Marsaud V, Appel M, Besnard M, Gurny R, Renoir M, Couvreur P. Tamoxifen encapsulation within polyethylene glycol-coated nanospheres. A new antiestrogen formulation. Int J Pharm, 2001;214:37–42
  • Brus C, Kleemann E, Aigner A, Czubayko F, Kissel T. Stabilization of oligonucleotide-polyethylenimine complexes by freeze-drying: Physicochemical and biological characterization. J Control Release, 2004;95:119–31
  • Budhian A, Siegel SJ, Winey KI. Haloperidol-loaded PLGA nanoparticles: Systematic study of particle size and drug content. Int J Pharm, 2007;336:367–75
  • Cavalli R, Caputo O, Carlotti E, Trotta M, Scarnecchia C, Gasco MR. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int J Pharm, 1997;148:47–54
  • Chawla JS, Amiji MM. Biodegradable poly(∈-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm, 2002;249:127–38
  • Chawla JS, Amiji MM. Cellular uptake and concentrations of tamoxifen upon administration in poly (ϵ-caprolactone) nanoparticles. Aaps Pharmsci, 2003;5:28–34
  • Del Pozo-Rodriguez A, Solinis MA, Gascon AR, Pedraz JL. Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. Eur J Pharm Biopharm, 2009;71:181–9
  • Dong Y, Ng WK, Shen S, Kim S, Tan RBH. Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers. Colloids Surf B, 2012;94:68–72
  • Feng F, Zheng D, Zhang D, Duan C, Wang Y, Jia L, Wang F, Liu Y, Gao Q, Zhang Q. Preparation, characterization and biodistribution of nanostructured lipid carriers for parenteral delivery of bifendate. J Microencapsul, 2011;28:280–5
  • Garg A, Singh S. Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloids Surf B Biointerfaces, 2011;87:280–8
  • Heiati H, Tawashi R, Phillips NC. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. J Microencapsulation, 1998;15:173–84
  • Heydenreich AV, Westmeier R, Pedersen N, Poulsen HS, Kristensen HG. Preparation and purification of cationic solid lipid nanospheres -- Effects on particle size, physical stability and cell toxicity. Int J Pharm, 2003;254:83–7
  • Huang ZR, Hua SC, Yang YL, Fang JY. Development and evaluation of lipid nanoparticles for camptothecin delivery: A comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol Sin, 2008;29:1094–102
  • Izutsu K, Kojima S. Excipient crystallinity and its protein-structure-stabilizing effect during freeze-drying. J Pharm Pharmacol, 2002;54:1033–9
  • Jain A, Agarwal A, Majumder S, Lariya N, Khaya A, Agrawal H, Majumdar S, Agrawal GP. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Rel, 2010;148:359–67
  • Kang KW, Chun M-K, Kim O, Subedi RK, Ahn S-G, Yoon J-H, Choi H-K. Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine (Philadelphia, PA, U.S.), 2010a;6:210–13
  • Kang KW, Chun MK, Kim O, Subedi RK, Ahn SG, Yoon JH, Choi HK. Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine, 2010b;6:210–13
  • Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm, 1983;15:25–35
  • Kramer R, Brown P. Should tamoxifen be used in breast cancer prevention? Drug Saf, 2004;27:979–89
  • Lee M-K, Lim S-J, Kim C-K. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials, 2007;28:2137–46
  • Li Z, Yu L, Zheng L, Geng F. Studies on crystallinity state of puerarin loaded solid lipid nanoparticles prepared by double emulsion method. J Therm Anal Calorim, 2010;99:689–93
  • Ma Z-H, Yu D-G, Branford-White CJ, Nie H-L, Fan Z-X, Zhu L-M. Microencapsulation of tamoxifen: Application to cotton fabric. Colloids Surf, B, 2009;69:85–90
  • Macgregor JI, Jordan VC. Basic guide to the mechanisms of antiestrogen action. Pharmacol Rev, 1998;50:151–96
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res, 1986;46:6387–92
  • Mehnert W, Mader K. Solid lipid nanoparticles. Production, characterization and applications. Adv Drug Delivery Rev, 2001;47:165–96
  • Minelli R, Occhipinti S, Gigliotti CL, Barrera G, Gasco P, Conti L, Chiocchetti A, Zara GP, Fantozzi R, Giovarelli M, et al. Solid lipid nanoparticles of cholesteryl butyrate inhibit the proliferation of cancer cells in vitro and in vivo models. Br J Pharmacol, 2013;170:233–44
  • Mosallaei N, Jaafari MR, Hanafi-Bojd MY, Golmohammadzadeh S, Malaekeh-Nikouei B. Docetaxel-loaded solid lipid nanoparticles: Preparation, characterization, in vitro, and in vivo evaluations. J Pharm Sci, 2013;102:1994–2004
  • Mouridsen H, Gershanovich M, Sun Y, Perez-Carrion R, Boni C, Monnier A, Apffelstaedt J, Smith R, Sleeboom HP, Jaenicke F, Pluzanska A, et al. Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: Analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J Clin Oncol, 2003;21:2101–9
  • Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – A review of the state of the art. Eur J Pharm Biopharm, 2000;50:161–77
  • Nicolson GL. Lipid replacement therapy: A nutraceutical approach for reducing cancer-associated fatigue and the adverse effects of cancer therapy while restoring mitochondrial function. Cancer Metastasis Rev, 2010;29(3):543–52
  • Nicolson GL, Conklin KA. Reversing mitochondrial dysfunction, fatigue and the adverse effects of chemotherapy of metastatic disease by molecular replacement therapy. Clin Exp Metastasis, 2008;25:161–9
  • Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm Res, 2010;27:2569–89
  • Panis C, Herrera ACSA, Victorino VJ, Campos FC, Freitas LF, Rossi T, Colado Simao AN, Cecchini AL, Cecchini R. Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat, 2012;133:89–97
  • Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharmaceut, 2009;366:170–84
  • Park JH, Lee S, Kim J-H, Park K, Kim K, Kwon IC. Polymeric nanomedicine for cancer therapy. Prog Polym Sci, 2008;33:113–37
  • Radomska-Soukharev A. Stability of lipid excipients in solid lipid nanoparticles. Adv Drug Deliv Rev, 2007;59:411–18
  • Rahman Z, Zidan AS, Khan MA. Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Eur J Pharm Biopharm, 2010;76:127–37
  • Raza K, Singh B, Singal P, Wadhwa S, Katare OP. Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf B, 2013;105:67–74
  • Reddy LH. Drug delivery to tumors: Recent strategies. J Pharm Pharmacol, 2005;57:1231–42
  • Reddy LH, Vivek K, Bakshi N, Murthy RSR. Tamoxifen citrate loaded solid lipid nanoparticles (SLN™): Preparation, characterization, in vitro drug release, and pharmacokinetic evaluation. Pharmaceut Dev Technol, 2006;11:167–77
  • Schubert MA, Muller-Goymann CC. Characterisation of surface-modified solid lipid nanoparticles (SLN): Influence of lecithin and nonionic emulsifier. Eur J Pharm Biopharm, 2005;61:77–86
  • Schwarz C, Mehnert W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). Int J Pharm, 1997;157:171–9
  • Shahgaldian P, Gualbert J, Aissa K, Coleman AW. A study of the freeze-drying conditions of calixarene based solid lipid nanoparticles. Eur J Pharm Biopharm, 2003;55:181–4
  • Shin S-C, Choi J-S, Li X. Enhanced bioavailability of tamoxifen after oral administration of tamoxifen with quercetin in rats. Int J Pharmaceut, 2006;313:144–9
  • Silva AC, Kumar A, Wild W, Ferreira D, Santos D, Forbes B. Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles. Int J Pharm, 2012;436:798–805
  • Singh AP, Saraf SK, Saraf SA. SLN approach for nose-to-brain delivery of alprazolam. Drug Deliv Transl Res, 2012;2:498–507
  • Sporn MB, Lippman SM. 2003. Agents for chemoprevention and their mechanism of action. In: Kufe DW, Pollock RE, Weichselbaum RR, Bast RC, Gansler TS, Holland JF, Frei 3rd E, eds. Holland-Frei cancer medicine, 6th edn. Hamilton (ON): BC Decker . Available at: http://www.ncbi.nlm.nih.gov/books/NBK12522/
  • Stapleton S, Allen C, Pintilie M, Jaffray D A. Tumor perfusion imaging predicts the intra-tumoral accumulation of liposomes. J. Control Release, 2013;172:351–7
  • Takeuchi H, Kojima H, Toyoda T, Yamamoto H, Hino T, Kawashima Y. Prolonged circulation time of doxorubicin-loaded liposomes coated with a modified polyvinyl alcohol after intravenous injection in rats. Eur J Pharm Biopharm, 1999;48:123–9
  • Tranum K, Roderick S. 2013. Solid lipid nanoparticles: Tuneable anti-cancer gene/drug delivery systems . Rijeka, Croatia: Intech
  • Visvanathan K, Chlebowski RT, Hurley P, Col NF, Ropka M, Collyar D, Morrow M, Runowicz C, Pritchard KI, Hagerty K, Arun B, et al. American society of clinical oncology clinical practice guideline update on the use of pharmacologic interventions including tamoxifen, raloxifene, and aromatase inhibition for breast cancer risk reduction. J Clin Oncol, 2009;27:3235–58
  • Wang P, Zhang L, Peng H, Li Y, Xiong J, Xu Z. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater Sci Eng C, 2013;33:4802–8
  • Welter M, Rieger H. Interstitial fluid flow and drug delivery in vascularized tumors: A computational model. PLoS One, 2013;8:e70395
  • Wesolowski R, Budd GT. Neoadjuvant therapy for breast cancer: Assessing treatment progress and managing poor responders. Curr Oncol Rep, 2009;11:37–44
  • Wintner LM, Giesinger JM, Zabernigg A, Sztankay M, Meraner V, Pall G, Hilbe W, Holzner B. Quality of life during chemotherapy in lung cancer patients: Results across different treatment lines. Br J Cancer, 2013;109:2301–8
  • Wunder SL, Merajver SD. Raman spectroscopic study of the conformational order in hexadecane solutions. J Chem Phys, 1981;74:5341–6
  • Zhang J, Fan Y, Smith E. Experimental design for the optimization of lipid nanoparticles. J Pharm Sci, 2009;98:1813–19
  • Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, Ozkan M, Ozkan CS. Zeta potential: A surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdev, 2008;10:321–8
  • Zhong S, Li W, Chen Z, Xu J, Zhao J. miR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene, 2013;531:8–14
  • Zhuang YG, Xu B, Huang F, Wu JJ, Chen S. Solid lipid nanoparticles of anticancer drugs against MCF-7 cell line and a murine breast cancer model. Pharmazie, 2012;67:925–9
  • Zimmermann E, Souto EB, Muller RH. Physicochemical investigations on the structure of drug-free and drug-loaded solid lipid nanoparticles (SLN) by means of DSC and 1H NMR. Pharmazie, 2005;60:508–13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.