1,122
Views
55
CrossRef citations to date
0
Altmetric
Physics/Engineering

Experimental characterisation of the thermal lesion induced by microwave ablation

, &
Pages 110-118 | Received 08 Aug 2013, Accepted 28 Dec 2013, Published online: 26 Feb 2014

References

  • Robinson JE, Wizenberg MJ, McReady WA. Combined hyperthermia and radiation suggest an alternative approach to heavy particle therapy for reduced oxygen enhancement ratios. Nature 1974;251:521–2
  • Guy AW, Lehmann JF, Stonebridge JB. Therapeutic applications of electromagnetic power. Proc IEEE 1974;62:55–75
  • Douple EB, Strohbehn JW, Bowers ED, Walsh JE. Cancer therapy with localized hyperthermia using an invasive microwave system. J Microw Power 1979;14:181–6
  • Overgaard J. Hyperthermia as an adjuvant to radiotherapy: Review of the randomized multicenter studies of the European Society for Hyperthermic Oncology. Strahlenther Onkol 1987;163:453–7
  • Seegenschmiedt MH, Brady LW, Sauer R. Interstitial thermoradiotherapy: Review on technical and clinical aspects. Am J Clin Oncol 1990;13:352–63
  • Mertyna P, Dewhirst MW, Halpern E, Goldberg W, Goldberg SN. Radiofrequency ablation: The effect of distance and baseline temperature on thermal dose required for coagulation. Int J Hyperthermia 2008;24:550–9
  • Dewhirst MW, Vigilanti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 2003;19:267–94
  • Yarmolenko PS, Moon EJ, Landon C, Manzoor A, Hochman DW, Viglianti BL, et al. Thresholds for thermal damage to normal tissues: An update. Int J Hyperthermia 2011;27:320–43
  • Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am J Roentgenol 2000;174:323–31
  • Ahmed M, Brace CL, Lee FT Jr, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology 2011;258:351–69
  • Ryan TP, Turner PF, Hamilton B. Interstitial microwave transition from hyperthermia to ablation: Historical perspectives and currents trends in thermal therapy. Int J Hyperthermia 2010;26:415–33
  • Chiang J, Wang P, Brace CL. Computational modelling of microwave tumour ablations. Int J Hyperthermia 2013;29:308–17
  • Cavagnaro M, Amabile C, Bernardi P, Pisa S, Tosoratti N. A minimally invasive antenna for microwave ablation therapies: Design, performances, and experimental assessment. IEEE Trans Biomed Eng 2011;58:949–59
  • Hamazoe R, Hirooka Y, Ohtani S, Katoe T, Kabara N. Intraoperative microwave tissue coagulation as treatment for patients with nonresectable hepatocellular carcinoma. Cancer 1995;75:794–800
  • Livraghi T, Lazzaroni S, Meloni F. Radiofrequency thermal ablation of hepatocellular carcinoma. Eur J Ultrasound 2001;13:159–66
  • Schwartz M, Roayaie S, Konstadoulakis M. Strategies for the management of hepatocellular carcinoma. Nat Clin Pract Oncol 2007;4:424–32
  • Callstrom MR, Charboneau JW. Technologies for ablation of hepatocellular carcinoma. Gastroenterology 2008;134:1831–5
  • Feliberti EC, Wagman LD. Radiofrequency ablation of liver metastases from colorectal cancer. Cancer Control 2006;13:48–51
  • Lopresto V, Pinto R, Lodato R, Lovisolo GA, Cavagnaro M. Design and realisation of tissue-equivalent dielectric simulators for dosimetric studies on microwave antennas for interstitial ablation. Phys Med 2012;28:245–53
  • Chin L Sherar M. Changes in dielectric properties of ex vivo bovine liver at 915 MHz during heating. Phys Med Biol 2001;46:197–211
  • Bircan C, Barringer SA. Determination of protein denaturation of muscle foods using the dielectric properties. J Food Sci 2002;67:202–5
  • Yang D, Converse MC, Mahvi D, Webster JG. Measurement and analysis of tissue temperature during microwave liver ablation. IEEE Trans Biomed Eng 2007;54:150–5
  • Ji Z, Brace CL. Expanded modelling of temperature-dependent dielectric properties for microwave thermal ablation. Phys Med Biol 2011;56:5249–64
  • Lopresto V, Pinto R, Lovisolo GA, Cavagnaro M. Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz. Phys Med Biol 2012;57:2309–27
  • Ai H, Wu S, Gao H, Zhao L, Yang C, Zeng Y. Temperature distribution analysis of tissue water vaporization during microwave ablation: Experiments and simulations. Int J Hyperthermia 2012;28:674–85
  • Yang D, Converse MC, Mahvi DM, Webster JG. Expanding the bioheat equation to include tissue internal water evaporation during heating. IEEE Trans Biomed Eng 2007;54:1382–8
  • Luxtron User’s Manual. Luxtron Model 712 Fluoroptic Thermometer Part Number 38–11490–01, revision D, March 1998
  • Lopresto V, Pinto R, Zambotti A, Mancini S, Lodato R, D’Atanasio P, et al. Microwave thermal ablation: Changes in the dielectric parameters of ex vivo bovine liver during the treatment. Conf Proc EBEA 2011;5132. Abstract Collection Book of EBEA 2011 Conference. ISBN 978-88-8286-231-2
  • Agilent Technologies. User’s manual. Agilent 85070E Dielectric Probe Kit 200 MHz to 50 GHz 5989-0222EN. 2011. http://cp.literature.agilent.com/litweb/pdf/5989-0222EN.pdf [Last accessed 31 January 2014].
  • Brace CL. Temperature-dependent dielectric properties of liver tissue measured during thermal ablation: Toward an improved numerical model. Conf Proc IEEE Eng Med Biol Soc 2008;230–3
  • Goldberg SN, Gazelle GS, Compton CC, Mueller PR, Tanabe KK. Treatment of intrahepatic malignancy with radiofrequency ablation. Cancer 2000;88:2452–63
  • Chiang J, Wang P, Brace CL. Computational modelling of microwave tumour ablations. Int J Hyperthermia 2013;29:308–3
  • O’Rourke AP, Lazebnik M, Bertram JM, Converse MC, Hagness SC, Webster JG, et al. Dielectric properties of human normal, malignant and cirrhotic liver tissue: In vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe. Phys Med Biol 2007;52:4701–19
  • Chang JT, Paulsen K, Meaney P, Fanning M. Non-invasive thermal assessment of tissue phantoms using an active near field microwave imaging technique. Int J Hyperthermia 1998;14:513–34
  • Meaney PM, Paulsen KD, Fanning MW, Li D, Fang Q. Image accuracy improvements in microwave tomographic thermometry: Phantom experience. Int J Hyperthermia 2003;19:534–50
  • Ishihara Y, Ohwada H. Non-invasive temperature measurement by using phase changes in electromagnetic waves in a cavity resonator. Int J Hyperthermia 2011;27:726–36
  • Cavagnaro M, Lopresto V, Pinto R. On the modelling of the temperature increase obtained in a microwave thermal ablation process. Paper presented at the BioEM2013 – Joint Meeting of the Bioelectromagnetics Society and the European BioElectromagnetics Association, Thessaloniki, Greece, 10–14 June 2013
  • Li M, Yu X, Liang P, Liu F, Dong B, Zhou P. Percutaneous microwave ablation for liver cancer adjacent to the diaphragm. Int J Hyperthermia 2012;28:218–26
  • Shafirstein G, Feng Y. Editorial: The role of mathematical modelling in thermal medicine. Int J Hyperthermia 2013;29:259–61

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.