177
Views
376
CrossRef citations to date
0
Altmetric
Original Article

Arrhenius relationships from the molecule and cell to the clinic

Pages 457-483 | Received 14 Jul 1993, Accepted 29 Nov 1993, Published online: 09 Jul 2009

References

  • Armour E. P., McEachern D., Wang Z., Corry P. M., Martinez A. Sensitivity of human cells to mild hyperthermia. Cancer Research 1993a; 53: 2740–2744
  • Armour E. P., Wang Z., Corry P., Martinez A. Equivalence of continuous and pulse simulated low dose rate irradiation in 9L gliosarcoma cells at 37° and 41 °C. International Journal of Radiation Oncology, Biology and Physics 1992; 22: 109–114
  • Armour E. P., Wang Z., Corry P. M., Chen P. Y., Martinez A. Hyperthermic enhancement of high dose-rate irradiation in 9L gliosarcoma cells. International Journal of Radiation Oncology, Biology and Physics 1993b; 28: 171–177
  • Barrau M. D., Blackburn G. R., Dewey W. C. The effects of heat on the centrosomes of CHO cells. Cancer Reserch 1978; 38: 2290–2294
  • Bauer K. D., Henle K. J. Arrhenius analysis of heat survival curves from normal and thermotolerant CHO cells. Radiation Research 1979; 78: 251–262
  • Ben-Hur E., Elkind M. M., Bronk B. V. Thermally enhanced radioresponse of cultured Chinese hamster cells: inhibition of repair of sublethal damage and enhancement of lethal damage. Radiation Research 1974; 58: 38–61
  • Bergonie J., Tribondeau L. Interpretation de quelques resultats de la radiotherapie et essai de fixation d'une technique rationnelle. Compt. Rend. Acad. Sci. 1906; 143: 983–985, (Translation published in Radiation Research 11, 32 196)
  • Bhuyan B. K., Day K. J., Edgerton C. E., Olufunso O. Sensitivity of different cell lines and different phases in the cell cycle to hyperthermia. Cancer Research 1977; 37: 3780–3784
  • Borrelli M. J., Thompson L. L., Cain C. A., Dewey W. C. Time-temperature analysis of cell killing of BHK cells heated at temperatures in the range of 43 · 5°C to 57·0°C. International Journal of Radiation Oncology, Biology and Physics 1990; 19: 389–399
  • Chu G. L., Dewey W. C. The role of low intracellular or extracellular pH in sensitization to hyperthermia. Radiation Research 1988; 114: 154–167
  • Curran W. J., Goodman R. L. Hyperthermia., 1991: A critical review. Radiation Research: A Twentieth-Century Perspective, W. C. Dewey, M. Edington, R. J. Fry, E. J. Hall, G. F. Whitmore. Academic, San Diego 1992; 883–888
  • Dewey W. C. Interaction of heat with radiation and chemotherapy. Cancer Research 1984; 44: 4714s–4720s, Suppl
  • Dewey W. C. Failla Memorial Lecture: The search for critical cellular targets damaged by heat. Radiation Research 1989; 120: 191–204
  • Dewey W. C., Esch J. L. Transient thermal tolerance: cell killing and polymerase activities. Radiation Research 1982; 92: 611–614
  • Dewey W. C., Freeman M. L., Raaphorst G. P., Clark E. P., Wong R. S. L., Highfield D. P., Spiro I. J., Tomasovic S. P., Denman D. L., Coss R. A. Cell Biology of Hyperthermia and Radiation. Radiation Biology in Cancer Research, R. E. Meyn, H. R. Withers. Raven, New York 1980; 589–621
  • Dewey W. C., Hopwood L. E., Sapareto S. A., Gerweck L. E. Cellular responses to combinations of hyperthermia and radiation. Radiology 1977; 123: 463–474
  • Dewey W. C., Sapareto S. A., Betten D. A. Hyperthermic radiosensitization of synchronous Chinese hamster cells: relationship between lethality and chromosomal aberrations. Radiation Research 1978; 76: 48–59
  • Dewey W. C., Westra A., Miller H. H., Nagasawa H. Heat-induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine. International Journal of Radiation Biology 1971; 20: 505–520
  • Dewhirst M. W., Griffin T. W., Smith A. R., Parker R. G., Hanks G. E., Brady L. W. COMMENTARY: Intersociety Council on radiation oncology essay on the introduction of new medical treatments into practice. Journal of the National Cancer Institute 1993; 85: 951–957
  • Dewhirst M. W., Phillips T. L., Samulski T. V., Stauffer P., Shrivastava P., Paliwal B., Pajak T., Gillim M., Sapozink M., Myerson R., Waterman F. M., Sapareto S. A., Corry P., Cetas T. C., Leeper D. B., Fessenden P., Kapp D., Oleson J. R., Emami B. RTOG quality assurance guidelines for clinical trials using hyperthermia. International Journal of Radiation Oncology, Biology and Physics 1990; 18: 1249–1259
  • Dewhirst M. W., Sim D. A., Sapareto S., Connor W. G. Importance of minimum tumor temperature in determining early and long-term responses of spontaneous canine and feline tumors to heat and radiation. Cancer Research 1984; 44: 43–50
  • Dikomey E., Jung H. Thermal radiosensitization in CHO cells by prior heating at 41–46°C. International Journal of Radiation Biology 1991; 59: 815–825
  • Dikomey E., Jung H. Effect of thermotolerance and step-down heating on thermal radiosensitization in CHO cells. International Journal of Radiation Biology 1992; 61: 235–242
  • Dunlop P. R. C., Hand J. W., Dickinson R. J., Field S. B. An assessment of local hyperthermia in clinical practice. International Journal of Hyperthermia 1986; 2: 39–50
  • Fajardo L. F. Pathological effects of hyperthermia in normal tissues. Cancer Research 1984; 44: 4826s–4835s, Suppl
  • Fajardo L. F., Meyer J. L., Meshorer A., Prionas S., Martinez A. A., Hahn G. M. Thermal injury and thermotolerance in mesenchymal tissues. Frontiers of Radiation Therapy and Oncology, J. M. Vaeth. Karger, Basel 1984; 144–152
  • Fajardo L. P., Prionas S. D., Kowalski J., Kwan H. H. Hyperthermia inhibits angiogenesis. Radiation Research 1988; 114: 297–3061
  • Field S. B., Morris C. C. The relationship between heating time and temperature: its relevance to clinical hyperthermia. Radiotherapy and Oncology 1983; 1: 179–186
  • Freeman M. L., Raaphorst G. P., Hopwood L. E., Dewey W. C. the effect of pH on cell lethality induced by hyperthermic treatment. Cancer 1980; 45: 2291–2300
  • Hahn G. M., Ning S. C., Elizaga M., Kapp D. S., Anderson R. L. A comparison of thermal responses of human and rodent cells. International Journal of Radiation Biology 1989; 56: 817–825
  • Hahn G. M., Shiu E. C. Adaptation to low pH modifies thermal and thermo-chemical responses of mammalian cells. International Journal of Hyperthermia 1986; 2: 379–387
  • Harmon B. V., Corder A. M., Collins R. J., Gobe G. C., Allen J., Allan D. J., Kerr J. F. R. Cell death induced in a murine mastocytoma by 42–47°C heating in vitro: evidence that the form of death changes from apoptosis to necrosis above a critical heat load. International Journal of Radiation Biology 1990; 58: 845–858
  • Harmon B. V., Takano Y. S., Winterford C. M., Gobe G. C. The role of apoptosis in the response of cells and tumours to mild hyperthermia. International Journal of Radiation Biology 1991; 1991: 489–501
  • Hartson-Eaton M., Malcolm A. W., Hahn G. M. Radiosensitivity and thermosensitization of thermotolerant Chinese hamster cells and RIF-1 tumors. Radiation Research 1984; 99: 175–184
  • Haveman J. Influence of pH and thermotolerance on the enhancement of X-ray induced inactivation of cultured mammalian cells by hyperthermia. International Journal of Radiation Biology 1983; 43: 281–289
  • Henle K. J., Tomasovic S. P., Dethlefsen L. A. Fractionation of combined heat and radiation in asynchronous CHO cells. I. Effects on radiation sensitivity. Radiation Research 1979; 80: 369–377
  • Henriques F. C. Studies of thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Archives of Pathology 1947; 43: 489–502
  • Hiraoka M., Hahn G. M. Comparison between tumor pH and cell sensitivity to heat in RIF-1 tumors. Cancer Research 1989; 49: 3734–3736
  • Holahan E. V., Highfield D. P., Holahan P. K., Dewey W. C. Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: Effects of pH and thermal tolerance. Radiation Research 1984; 97: 108–131
  • Holahan P. K., Wong R. S. L., Thompson L. L., Dewey W. C. Hyperthermic radiosensitzation of thermotolerant Chinese hamster ovary cells. Radiation Research 1986; 107: 332–343
  • Jorritsma J. B. M., Burgman P., Kampinga H. H., Konings A. W. T. DNA polymerase activity in heat killing and hyperthermic radiosensization of mammalian cells as observed after fractionated heat treatments. Radiation Research 1986; 105: 307–319
  • Jorritsma J. B. M., Kampiinga H. H., Scaf A. H. J., Konings A. W. T. Strand break repair, DNA polymerase activity and heat radiosensitization in thermotolerant cells. International Journal of Hyperthermia 1985; 1: 131–145
  • Law M. P. Some effects of fractionation on the response of the mouse ear to combined heat and X-rays. Radiation Research 1979; 80: 360–368
  • Law M. P., Ahier R. G., Field S. B. The effect of prior heat treatment on the thermal enhancement of radiation damage in the mouse ear. British Journal of Radiology 1979; 52: 315–321
  • Leopold K. A., Dewhirst M., Samulski T., Harrelson J., Tucker J. A., George S. L., Dodge R. K., Grant W., Clegg S., Prosnitz L. R., Oleson J. R. Relationships among tumor temperature, treatment time, and histopathological outcome using preoperative hyperthermia with radiation in soft tissue sarcomas. International Journal of Radiation Oncology, Biology and Physics 1992; 22: 989–998
  • Li G. C., Li G. M. A proposed operational model of thermotolerance based on effects of nutrients and the initial treatment temperature. Cancer Research 1980; 40: 4501–4508
  • Lyng H., Monges O. R., Bohler P. J., Rofstad E. K. Relationships between thermal dose and heat-induced tissue and vascular damage after thermoradiotherapy of locally advanced breast carcinoma. International Journal of Hyperthermia 1991; 7: 403–415
  • Mackey M. A., Anolik S. L., Roti J. L. R. Cellular mechanisms associated with the lack of chronic thermotolerance expression in HeLa S3 cells. Cancer Research 1992; 52: 1101–1106
  • Mackey M. A., Dewey W. C. Time temperature analyses of cell killing of synchronous G1and S phase Chinese hamster cellsin vitro. Radiation Research 1988; 113: 318–333
  • Mackey M. A., Dewey W. C. Cell cycle progression during chronic hyperthermia in S phase CHO cells. International Journal of Hyperthermia 1989; 5: 405–415
  • Matsumura M., Yasumura S., Shuichi A. Cumulative effect of intragenic amino-acid replacements on the thermostability of a protein. Nature 1986; 323: 356–358
  • Meshorer A., Prionas S. D., Fajardo L. F., Meyer J. L., Hahn G. M., Martinez A. A. The effects of hyperthermia on normal mesenchymal tissues. Archives of Pathology and Laboratory Medicine 1983; 107: 328–334
  • Nielsen O. S., Overgaard J. Hyperthermic radiosensitization of thermotolerant tumour cells in vitro. International Journal of Radiation Biology 1979; 35: 171–176
  • Nielsen O. S., Overgaard J., Kamura T. Influence of thermotolerance on the interaction between hyperthermia and radiation in a solid tumour in vivo. British Journal of Radiology 1983; 56: 267–273
  • Nielsen O. S. Influence of thermotolerance on the interaction between hyperthermia and radiation in L1A2 cells in vitro. International Journal of Radiation Biology 1983; 43: 665–673
  • Oleson J. R., Samulski T. V., Leopold K. A., Scott T. C., Dewhirst M. W., Dodge R. K., George S. L. Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatment. International Journal of Radiation Oncology, Biology and Physics 1993; 25: 289–297
  • Overgaard J. Fractionated radiation and hyperthermia: experimental and clinical studies. Cancer 1981; 48: 1116–1123
  • Overgaard J. Some problems related to the clinical use of thermal isoeffect doses. International Journal of Hyperthermia 1987; 3: 329–336
  • Overgaard J., Nielsen O. S. The importance of thermotolerance for the clinical treatment with hyperthermia. Radiotherapy and Oncology 1983; 1: 167–178
  • Overgaard J., Nielsen O. S. Influence of thermotolerance on the effect of combined hyperthermia and radiation in a C3H mammary carcinomain vivo. Proceedings of the IV International Symposium on Hyperthermic Oncology, J. Overgaard. Taylor & Francis, London 1984; 227–230
  • Palzer R. J., Heidelberger C. Studies on the quantitative biology of hyperthermic killing of HeLa cells. Cancer Research 1973; 33: 415–421
  • Prescott D. M., Charles H. C., Sostman H. D., Dodge R. K., Thrall D. E., Page R. L., Tucker A., Harrelson J. M., Leopold K. A., Oleson J. R., Dewhirst M. W. Therapy monitoring in human and canine soft tissue sarcomas using magnetic resonance imaging and spectroscopy. International Journal of Radiation Oncology, Biology and Physics 1994; 28: 415–423
  • Prionas S. D., Taylor M. A., Fajardo L. F., Kelly N. I., Nelson T. S., Hahn G. M. Thermal sensitivity to single and double heat treatments in normal canine liver. Cancer Research 1985; 45: 4791–4797
  • Raaphorst G. P., Azzam E. L. Thermal radiosensitization in Chinese hamster (V79) and mouse C3H 10T 1/2 cells. The thermotolerance effect. British Journal of Cancer 1983; 48: 45–54
  • Raaphorst G. P., Romano S. L., Mitchell J. B., Bedford J. S., Dewey W. C. Intrinsic differences in heat and/or X-ray sensitivity of seven mammalian cell lines cultured and treated under identical conditions. Cancer Research 1979; 39: 396–401
  • Read R. A., Bedford J. S. Thermal tolerance. British Journal of Radiology 1980; 53: 920–921
  • Robinson J. E., Harrison G. H., McCready W. A., Samaras G. M. Good thermal diosimetry is essential to good hyperthermia research. British Journal of Radiology 1978; 51: 532–534
  • Robinson J. E., Wizenberg M. J., McReady W. A. Combined hyperthermia and radiation, an alternative to heavy particle therapy for reduced oxygen enhancement ratios. Nature 1974; 251: 521–522
  • Roizin-Towle L., Pirro J. P. The response of human and rodent cells to hyperthermia. International Journal of Radiation Oncology, Biology and Physics 1991; 20: 751–756
  • Rosenberg B., Kemeny G., Switzer R. C., Hamilton T. C. Quantitative evidence for protein denaturation as the cause of thermal death. Nature 1971; 232: 471–473
  • Sapareto S. A. A workshop on thermal dose in cancer therapy: introduction. International Journal of Hyperthermia 1987; 3: 289–290
  • Sapareto S. A., Dewey W. C. Thermal dose determination in cancer therapy. International Journal of Radiation Oncology, Biology and Physics 1984; 10: 787–800
  • Sapareto S. A., Hopwood L. E., Dewey W. C. Combined effects of x-irradiation and hyperthermia on CHO cells for various temperatures and orders of application. Radiation Research 1978a; 73: 221–233
  • Sapareto S. A., Hopwood L. E., Dewey W. C., Raju M. R., Gray J. W. Hyperthermic effects on survival and progression of CHO cells. Cancer Research 1978b; 38: 397–400
  • Sapareto S. A., Raaphorst G. P., Dewey W. C. Cell killing and the sequencing of hyperthermia and radiation: Brief Communication. International Journal of Radiation Oncology, Biology and Physics 1979; 5: 343–347
  • Sneed P. K., Gutin P. H., Stauffer P. R., Phillips T. L., Prados M. D., Weaver K. A., Suen S., Lamb S. A., Ham B., Ahn D. K., Lamborn K., Larson D. A., Wara W. M. Thermoradiotherapy of recurrent malignant brain tumors. International Journal of Radiation Oncology, Biology and Physics 1992; 23: 853–861
  • Sostman H. D., Prescott D. M., Dewhirst M. W., Dodge R. K., Thrall D. E., Page R. L., Tucker J. A., Harrelson J., Reece G., Leopold K. A., Oleson U. R., Charles H. C. MR Imaging and spectroscopy for prognostic evaluation in soft tissue sarcomas. Radiology 1994; 190: 269–275
  • Thistlethwaite A. J., Alexander G. A., Moylan D. J., Leeper D. B. Modification of human tumor pH by elevation of blood glucose. International Journal of Radiation Oncology, Biology and Physics 1987; 13: 603–610
  • Urano M., Majima Miller H. R., Kahn J. Cytotoxic effect of 2,3 bis (2-chloroethyl)-N-nitrosourea at elevated temperatures: arrhenius plot analysis and tumour response. International Journal of Hyperthermia 1991; 7: 499–510
  • Van Rijn J., Van Den Berg J., Schamhart D. H. J., Van Wijk R. Effect of thermotolerance on thermal radiosensitization in hepatoma cells. Radiation Research 1984; 97: 318–328
  • Vidair C. A., Doxsey S. J., Dewey W. C. Heat shock alters centrosome organization leading to mitotic dysfunction and cell death. Journal of Cellular Physiology 1993; 154: 443–455
  • Wang Z., Armour E. P., Corry P. M., Martinez A. Elimination of dose-rate effects by mild hyperthermia. International Journal of Radiation Oncology, Biology and Physics 1992; 24: 965–973
  • Westra A., Dewey W. C. Variation in sensitivity to heat shock during the cell cycle of Chinese hamster cellin vitro. International Journal of Radiation Biology 1971; 19: 467–477
  • Wong R. S. L., Kapp L. N., Krishnaswamy G., Dewey W. C. Critical steps for induction of chromosomal aberrations in CHO cells heated in S Phase. Radiation Research 1993; 133: 52–59

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.