10
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Step-down heating enhances the cytotoxicity of human tumour necrosis factor on murine and human tumour cell lines in vitro

, &
Pages 97-114 | Received 04 Jan 1994, Accepted 01 Mar 1995, Published online: 09 Jul 2009

References

  • Hahn G. M., Shiu E. C. Protein synthesis, thermotolerance and step down heating. International Journal of Radiation Oncology, Biology and Physics 1985; 11: 159–164
  • Hannum Y. A. The sphingomyelin cycle and the second messenger function of ceramide. Journal of Biological Chemistry 1994; 269: 3125–3128
  • Henle K. J. Sensitization to hyperthermia below 43†C induced in Chinese hamster ovary cells by step-down heating. Journal of National Cancer Institute 1980; 64: 1479–1483
  • Henle K. J., Leeper D. B. Combinations of hyperthermia (40†, 45†C) with radiation. Radiology 1976; 121: 451–454
  • Henle K. J., Nagle W. A. Inhibition of heat shock protein synthesis and protein glycosylation by stepdown heating. Experimental Research 1991; 196: 184–191
  • Herman T. S., Kenle K. J., Nagle W. A., Moss A. J., Monson T. P. Effect of step-down heating on the cytotoxicity of adriamycin, bleomycin, and ris-diamminedichloroplatinum. Cancer Research 1984; 44: 1823–1826
  • Jaattela M, Saksela K., Saksela E. Heat shock protects WEHI-164 target cells from the cytolysis by tumor necrosis factors a and ft. European Journal of Immunology 1989; 19: 1413–1417
  • Jaattela M., Wissing D. Heat-shock proteins protect cells from monocyte cytotoxicity: Possible mechanism of self-protection. Journal of Experimental Medicine 1993; 177: 231–236
  • Jaattela M, Wissing D., Bauer P. A., Li G. C. Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. The EMBO Journal 1992; 11: 3507–3512
  • Jarvis W. D, Kolesnick R. N., Fornari F. A., Traylor R. S., Gewirtz D. A., Grant S. A. Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proceedings of the National Academy of Sciences USA 1994; 91: 73–77
  • Josm D. S., Jung H. Thermotolerance and sensitization induced in CHO cells by fractionated hyperthermic treatments at 38†-45OC. European Journal of Cancer 1979; 15: 345–350
  • Jung H. A generalized concept for cell killing by heat. Radiation Research 1986; 106: 56–72
  • Jung H. Step-down heating of CHO cells at 37.5–39†C. International Journal of Hyperthermia 1989; 5: 665–673
  • Jung H., Rolling H. Induction of thermotolerance and sensitization in CHO cells by combined hyperthermic treatments at 40 and 43†C. European Journal of Cancer 1980; 16: 1523–1528
  • Klostergaard J., Leroux E., Siddik Z. H., Khodadadian M., Tomasovic S. P. Enhanced sensitivity of human colon tumor cell lines in vitro in response to thermochemoim-munotherapy. Cancer Research 1992; 52: 5271–5277
  • Klostergaard J., Leroux M. E., Hsu H. A., Hsi B. P., Siddik Z. H., Danhauser L. L., Tomasovic S. P. Multi-chemothermoimmunotherapy for human colon adenocar cinoma in vitro. Cancer Chemotherapy and Pharmacology 1995a, in press
  • Klostergaard J., Leroux E., Tomasovic S. P. Clonogenic survival studies of human colon tumor cell lines in vitro: combined hyperthermia, 5-fluorouracil/leucovorin, carboplatin, and tumor necrosis factor. Radiation Research 1995b, in press
  • Klostergaard J., Tomasovic S. P. Hyperthermia and biological response modifiers. Hyperthermia and Oncology, M. Urano, E. Douple. VSP, The Netherlands 1993; 4: 1–42
  • Klostergaard J., Tomasovic S. P. Tumor necrosis factor: Development of second-generation variants and multimodality approaches to clinical applications. The Cancer Bulletin 1991; 43: 64–70
  • Landry J., Chretien P. Relationship between hyperthermia-induced heat-shock proteins and thermotolerance in Morris hepatoma cells. Canadian Journal of Biochemistry and Cell Biology 1983; 61: 428–27
  • Lee Y. J., Hou Z., Curetty L., Cho J. M., Corry P. M. Synergistic effects of cytokine and hyperthermia on cytotoxicity in HT-29 cells are not mediated by alteration of induced protein levels. Journal of Cellular Physiology 1993; 155: 27–35
  • Lindegaard J. C. Thermosensitization induced by step-down heating: A review on heatinduced sensitization to hyperthermia alone or hyperthermia combined with radiation. International Journal of Hyperthermia 1992; 8: 561–586
  • Lindegaard J. C., Nielsen O. S. Time-temperature relationships for L1A2 cells step-down heated from 38 to 45†C in vitro. Radiation Research 1990; 121: 282–287
  • Mehlen P., Preville X., Chareyron P., Briolay J., Klemenz R., Arrigo A.-P. Constitutive expression of either human HSP 27, Drosophila HSP 27 or human α-β crystallin confers resistance to tumor necrosis factor- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. Journal of Immunology 1994, submitted
  • Niitsu Y., Watanabe N., Umeno H., Sone H., Neda H., Yamauchi N., Maeda M., Urushizaki I. Synergistic effects of recombinant human tumor necrosis factor and hyperthermia on in vitro cytotoxicity and artificial metastasis. Cancer Research 1988; 48: 654–657
  • Obeid L. M, Linardic C. M., Karolak L. A., Hannun Y. A. Programmed cell death induced by ceramide. Science 1993; 259: 1769–1771
  • Schutze S., Machleidt T., Kronke M. Mechanisms of tumor necrosis factor action. Seminars in Oncology 1992; 19: 16–24
  • Tomasovic S. P., Barta M., Klostergaard J. Temporal dependence of hyperthermic augmentation of macrophage-TNF production and tumour cell-TNF sensitization. International Journal of Hyperthermia 1989a; 5: 625–639
  • Tomasovic S. P., Barta M., Klostergaard J. Neutral red uptake and clonogenic survival assays of the hyperthermic sensitization of tumor cells to tumor necrosis factor. Radiation Research 1989b; 119: 325–337
  • Tomasovic S. P., Klostergaard J. Hyperthermic modulation of macrophage-tumor cell interactions. Cancer and Metastasis Reviews 1989; 8: 215–229
  • Tomasovic S. P., Lu S., Klostergaard J. Comparative in vitro studies of the potentiation of tumor necrosis factor (TNF)-α, TNF-β, and TNF-sam2 cytotoxicity by hyperthermia. Journal of Immunotherapy 1992; 11: 85–92
  • Van Wijk R., Ovelgonne J. H., De Koning E., Jaarsveld K., Van Run J., Wiegant F. A. C. Mild stepdown heating causes increased levels of HSP 68 ad of HSP 84 mRNA and enhances thermotolerance. International Journal of Hyperthermia 1994; 10: 115–125
  • Watanabe N., Niitsu Y., Umeno H., Sone H., Neda H., Yamauchi N., Maeda M., Urushizaki I. Synergistic cytotoxic and antitumor effects of recombinant human tumor necrosis factor and hyperthermia. Cancer Research 1988; 48: 650–653
  • Wang G., Klostergaard J., Khodadadian M., Wu J., Wu T.-W., Fung P., Carper S. W., Tomasovic S. P. Murine L929 cells transfected with human HSP 27 cDNA resist TNF-induced cytotoxicity. Journal of Immunotherapy 1929, submitted
  • Wong G. H. W., Goeddel D. V. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 1988; 242: 941–944
  • Yamauchi M., Watanabe N., Maeda M., Okamoto T., Sasaki H., Tsuji N., Tsuji Y., Umeno H., Akiyama S., Niitsu Y. Mechanism of synergistic cytotoxic effect between tumor necrosis factor and hyperthermia. Japanese Journal of Cancer Research 1992; 83: 540–545

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.