153
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Non-invasive, in-vivo electrical impedance of EMT-6 tumours during hyperthermia: Correlation with morphology and tumour-growth-delay

, &
Pages 1-20 | Received 02 Oct 1995, Accepted 11 Sep 1996, Published online: 09 Jul 2009

References

  • Acker J. C., Dewhirst M. W., Honore G. M., Samulski T. V., Tucker J. A., Oleson J. R. Blood perfusion measurements in human tumors: evaluation of laser Doppler methods. International Journal of Hyperthermia 1990; 6: 287–304
  • Ackmann J. J., Seitz M. A. Methods of complex impedance measurements in biologic tissue. CRC Critical Reviews in Biomedical Engineering 1984; 11: 281–311
  • Asami K. Dielectric behavior of yeast cell suspensions: effects of some chemical agents and physical treatments on the plasma membranes and the cytoplasms. Bulletin of the Institute of Chemical Research, Kyoto University 1977; 55: 281–309
  • Bass H., Coakley W. T., Moore J. L., Tilley D. Hyperthermia-induced changes in the morphology of CHO-KI and their refractile inclusions. Journal of Thermal Biology 1982; 7: 231–242
  • Borrelli M. J., Wong R. S. L., Dewey W. C. A direct correlation between hyperthermia-induced membrane blebbing and survival in synchronous G1 CHO cells. Journal of Cell Physiology 1986; 126: 181–190
  • Bonincontro A., Mariuti G. Influence of hyperthermia, pH and culturing conditions on the electrical parameters of Chinese hamster V79 cells. Physics in Medicine and Biology 1988; 33: 557–568
  • Brown B. H., Barber D. C., Wang W., Lu L., Leathard A. D., Smallwood R. H., Hampshire A. R., Mackay R., Hatzigalanis K. Multi-frequency imaging and modeling of respiratory related electrical impedance changes. Physiological Measurement 1994; 15(Supp. 2a)1–12
  • Cetas T. C., Richards W. F., Gross E. J. Physics today, clinic tomorrow. A plan for new system development. International Journal of Hyperthermia 1994; 10: 411–417
  • Cole K. S., Cole R. H. Dispersion and absorption in dielectrics, I. Alternating current characteristics. Journal of Chemical Physics 1941; 9: 341–351
  • Dewey W. C. Arrhenius relationships from the molecule and cell to the clinic. International Journal of Hyperthermia 1994; 10(4)457–483
  • Dewhirst M. W., Gross J. F., Sim D. A. Effects of heating rate on normal and tumor microcirculatory function. Heat and Mass Transfer in the Microcirculation of Thermally Significant Vessels-HTD-Vol, K. R. Diller, R. B. Roemer. American Society of Mechanical Engineers, New York 1986, 61
  • Dissado L. A. A fractal interpretation of the dielectric response of animal tissues. Physics in Medicine and Biology 1990; 35(11)1487–1503
  • Dissado L. A., Alison J. M., Hill R. M., McRae D. A., Esrick M. A. Dynamic scaling in the dielectric response of excised EMT-6 tumours undergoing hypertherrnia. Physics in Medicine and Biology 1995; 40(6)1067–1084
  • Esrick M. A., McRae D. A. The effect of hyperthermia-induced tissue conductivity changes on electrical impedance temperature mapping. Physics in Medicine in Biology 1994; 39(2)133–144
  • Evert D. R., Weiser C. J. Relationship of electrical conductance at two frequencies to cold injury and acclimation in. cornus stolonifera michx. Plant Physiology 1971; 47: 204–208
  • Fajardo L. F., Egbert B., Marmor J., Hahn G. M. Effects of hyperthermia in a malignant tumor. Cancer 1980; 45: 613–623
  • Fajardo L. F., Prionas S. D. Endothelial cells and hyperthermia. International Journal of Hyperthermia 1994; 10(3)347–353
  • Gersing E., Osypka M. EIT using magnitude and phase in an extended frequency range. Physiological Measurement 1994; 15(Suppl. 2a)21–28
  • Gersing E., Kruger W., Osypka M., Vaupel P. Problems involved in temperature measurements using EIT. Physiological Measurement 1995; 16: A153–A160
  • Griffiths H., Jossinet J. Bioelectrical spectroscopy from multi-frequency EIT. Phvsiological Measurement 1994; 15(Suppl. 2a)29–35
  • Griffiths H. Tissue spectroscopy with electrical impedance tomography: computer simulations. IEEE Transactions on Biomedical Engineering 1995; 42: 948–954
  • Harmon B. V., Corder A. M., Collins R. J., Gobe G. C., Allen J., Allan D. J., Kerr J. F. R. Cell death induced in a murine mastocytoma by 42–47°C heating in vitro: evidence that the form of death changes from apoptosis to necrosis above a critical heat load. International Journal of Radiation Biology 1990; 58(5)845–858
  • Harmon B. V., Takano Y. S., Winterford C. M., Gobe G. C. The role of apoptosis in the response of cells and tumours to mild hyperthermia. International Journal of Radiation Biology 1991; 59(2)489–501
  • Kerr J. F. R., Harmon B. V. Definition and incidence of apoptosis: an historical perspective. Apoptosis: The Molecular Basis of Cell Death. Cold Spring Harbour Laboratory Press, Cold Spring 1991
  • Kraszewski A. Comments on Dielectric properties of solid tumors during normothermia and hyperthermia. IEEE Transactions on Biomedical Engineering 1986; 33: 799–800
  • Lyng H., Skretting A., Rofstad E. K. Blood flow in six human melanoma xenograft lines with different growth characteristics. Cancer Research 1992; 52: 584–592
  • MacDonald J. R. Impedance spectroscopy. Annals of Biomedical Engineering 1992; 20: 289–305
  • McRae D. A. A technique for modeling the internal structures of objects using phase-sensitive measurement of their low frequency electrical response and its application to some human body cross-sections. 1983, PhD. Dissertation
  • McRae D. A., Esrick M. A. Abstract: tissue electrical impedance as a measure of hyperthermia effect. Proceedings of 10th Annual Meeting North American Hyperthermia Group. 1990, 117
  • McRae D. A., Esrick M. A. The dielectric parameters of excised EMT-6 tumours and their change during hyperthermia. Physics in Medicine and Biology 1992; 37(11)2045–2058
  • McRae D. A., Esrick M. A. Tissue electrical impedance: temperature coefficient and distinct tissue property changes during hyperthermia. 15th Annual Meeting of the NAHS. 1995
  • McRae D. A., Esrick M. A. Using deconvolved dispersion parameters for selecting EIT frequencies. Proceedings of the 22nd Annual Northeast Bioengineering Conference. 1996a, 74–75
  • McRae D. A., Esrick M. A. Deconvoluted electrical impedance spectra track distinct cell morphology changes. IEEE Transactions on Biomedical Engineering 1996b; 43(6)607–618
  • McRae D. A., Esrick M. A., Mueller S. C. (1996c) Cell response monitored with electrical impedance, nun-invasively, in vivo in the presence of temperature changes. Proceedings of the 7th International Congress on Hyperthermic Oncology, RomaItaly, April, 9–131996, 409–411
  • Marmor J. B., Hahn N., Hahn G. M. Tumor cure and cell survival after localized radiofrequency heating. Cancer Research 1977; 37: 879–883
  • Marmor J. B., Hilerio F. J., Hahn G. M. Tumor eradication and cell survival after localized hyperthermia induced by ultrasound. Cancer Research 1979; 39: 2166–2171
  • Menke H., Vaupel P. Effect of injectable or inhalational anesthetics and of neuroleptic, neuroleptanalgesic, and sedative agents on tumor blood flow. Radiation Research 1988; 114: 64–76
  • Moroi J., Kashiwagi S., Kim S., Urakawa M., Ito H., Yamaguchi K. Regional differences in apoptosis in murine gliosarcoma (T9) induced by mild hyperthermia. International Journal of Hyperthennia 1996; 12(3)345–354
  • Moskowitz M. J., Ryan T. P., Paulsen K. D. Clinical implementation of electrical impedance tomography with hyperthermia. International Journal of Hyperthermia 1995; 11: 141–149
  • Nishimura Y., Shibamoto Y., Jo S., Akuta K., Hiraoka M., Takahashi M., Abe M. Relationship between heat-induced vascular damage and thermosensitivity in four mouse tumors. Cancer Research 1988; 48: 7226–1230
  • Paulsen K. D., Moskowitz M. J., Ryan T. P., Mitchell S. E. Initial in vivo experience with EIT as a thermal estimator during hyperthermia. International Journal of Hyperthermia 1996; 12: 573–591
  • Peloso R., Tuma D. T., Jain R. K. Dielectric properties of solid tumors during normothermia and hyperthermia. IEEE Transactions on Biomedical Engineering 1984; 31: 725–728
  • Reinhold H. S., Endrich B. Tumour microcirculation as a target for hyperthermia. International Journal of Hyperthermia 1986; 2: 111–137
  • Riedy M. C., Muirhead K. A., Jensen C. P., Stewart C. C. Use of a photolabeling technique to identify nonviable cells in fixed homologous or heterologous cell populations. Cytometry 1991; 12: 133–139
  • Rigaud B., Hamzaoui L., Chauveau N., Granie M., Scorn Di Rinaldi J. P., Morucci J. P. Tissue characterization by impedance: a multifrequency approach. Physiological Measurement 1994; 15(Supp1. 2a)13–20
  • Rockwell S. C., Kallman R. F., Fajardo L. F. Characteristics of a serially transplanted mouse mammary tumor and its tissue-culture-adapted derivative. Journal of the National Cancer Institute 1972; 49: 735–741
  • Sapareto S. A., Hopwood L. E., Dewey W. C., Raju M. R., Gray J. W. Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Research 1978; 38: 393–400
  • Schwan H. P. Electrical properties of tissues and cell suspension. Advances in Biology and Medical Physics. Academic Press, New York 1957; Vol. 5: 147–209
  • Shibamoto Y., Yukawa Y., Tsutsui K., Takahashi M., Abe M. Variation in the hypoxic fraction among mouse tumors of different types, sizes and sites. Japanese Journal of Cancer Research 1986; 77(9)908–915
  • Smith T. L., Hutchins P. B. Anesthetic effects on hemodynamics of spontaneously hypertensive and Wistar-Kyoto rats. American Journal of Physiology 1980; 238: 539–544
  • Stoy R. D., Foster K. R., Schwan H. P. Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of data. Physics in Medicine and Biology 1982; 27(4)501–513
  • Tamura T., Tenhunen M., Lahtinen T., Repo R., Schwan H. P. Modelling the dielectric properties of normal and irradiated skin. Physics in Medicine and Biology 1994; 39: 927–936
  • Vidair C. A., Dewey W. C. Two distinct modes of hyperthermic cell death. Radiation Research 1988; 116: 157–171
  • Walker N. I., Harmon B. V., Gobe G. C., Kerr J. F. R. Patterns of cell death. Methods and Achievements in Experimental Pathology (Basel) 1988; 13: 18–54
  • Waterman F. M., Tupchong L., Nerlinger R. E., Matthews J. Blood flow in human tumors during local hyperthermia. International Journal of Radiation, Oncology, Biology and Physics 1991; 20: 1255–1262
  • Zywietz F., Knochel R. Dielectric properties of Co-y-irradiated and microwave-heated rat tumor and skin measured in vivo between 0.2 and 2.4 GHz. Physics in Medicine and Biology 1986; 31: 1021–1029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.