10
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Effect of preand postganglionic lesioning of the trigeminal nerve on cerebral blood flow and glucose metabolism following a subarachnoid haemorrhage in the squirrel monkey

, , &
Pages 211-225 | Published online: 06 Jul 2009

References

  • Rennels M L, Nelson E. Capillary innervation in the mammalian central nervous system: an electron microscopic demonstration. Am J Anat 1975; 144: 233–41
  • Owman C. Neurogenic control of the vascular system: focus on cerebral circulation. Handbook of Physiology. The Nervous System. Intrinsic Regulatory Systems of the Brain, V B Mountcastle, F E Bloom, S R Geiger. American Physiological Society, Bethesda, MD 1986; Vol. IV: 525–80, Section 1
  • Raichle M E, Hartman B K, Eichling J O, Sharpe L G. Central noradrenergic regulation of cerebral blood flow and vascular permeabilty. Proc Natl Acad Sci USA 1975; 72: 3726–30
  • Edvinsson L, MacKenzie E T. Amine mechanisms in the cerebral circulation. Pharmacol Rev 1976; 28: 275–353
  • Suzuki N, Hardebo J E, Kahrstrom J, Owman Ch. Selective electrical stimulation of postganglionic cerebrovascular parasympathetic fibers originating from the sphenoparatine ganglion enhances cortical blood flow in the rat. J Cereb Blood Flow Metab 1990; 10: 383–91
  • Hara H, Hamil G S, Jacobwitz D M. Origin of cholinergic nerves to the rat major cerebral arteries: coexistence with vasoactive intestinal polypeptide. Brain Res Bull 1985; 14: 179–88
  • Saito A, Wu J Y, Lee T JF. Evidence for the presence of cholinergic nerves in cerebral arteries: an immunohis-tochemical demonstration of choline acetyltransferase. J Cereb Blood Flow Metab 1985; 5: 327–34
  • Suzuki N, Hardebo J E, Owman Ch. Origins and pathways of choline acetyltransferase-positive parasympathetic nerve fibers to cerebral vessels in rats. J Cereb Blood Flow Metab 1990; 10: 399–408
  • Arbab M A-R, Wiklund L, Svendgaard N A. Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat. Neuroscience 1986; 19: 695–708
  • Liu Chen L Y, Mayberg M R, Moskowitz M A. Immu-nohistochemical evidence for a substance P-containing trigeminovascular pathway to pial arteries in cats. Brain Res 1983; 268: 162–6
  • Mayberg M R, Zervas N T, Moskowitz M A. Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry. J Comp Neurol 1984; 23: 46–56
  • Ruskel G L, Simons T. Trigeminal nerve paths to the cerebral arteries in monkey. J Anat 1987; 155: 23–37
  • Edvinsson L, McCulloch J, Uddman R. Substance P: immunohistochemical localization and effect upon cat pial arteries in vitro and in situ. J Physiol, (Lond) 1981; 318: 251–8
  • Liu Chen L Y, Liszczak T M, King J C, Moskowitz M A. Immunoelectron microscopic study of substance P-containing fibers in feline cerebral arteries. Brain Res 1986; 369: 12–20
  • McCulloch J, Uddman R, Kingman T, Edvinsson L. Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc Natl Acad Sci USA 1986; 83: 5731–5
  • O'Connor T P, Van der Kooy D. Enrichment of a vasoactive neuropeptide (calcitonin gene-related peptide) in the trigeminal sensory projection to the intracranial arteries. J Neurosci 1988; 8: 2468–76
  • Moskowitz M, Wei E P, Saito K, Kontos H A. Trigemi-nalectomy modifies pial arterial responses to hypertension or norephinephrine. Am J Physiol 1988; 255: H1–H6
  • Sakas D E, Moskowitz M A, Wei E P, Kontos H A, Kano M, Ogliby C S. Trigeminovascular fibers increase blood flow in cortical gray matter by an axon reflex-like mechanism during acute severe hypertension or seizures. Proc Natl Acad Sci USA 1989; 86: 1401–5
  • Shiokawa Y, Arbab M AR, Delgado-Zygmunt T J, Svendgaard N Aa. The effect of pre- and postganglionic lesioning of the trigeminal nerve on the development of cerebral vasospasm in the squirrel monkey. Angiographic findings. Br J Neurosurg, in press
  • Tsai S H, Tew J M, McLean J H, Shipley M T. Cerebral arterial innervation by nerve fibres containing calcitonin gene-related peptide (CGRP): 1. Distribution and origin of CGRP perivascular innervation in the rat. J Comp Neurol 1988; 271: 435–44
  • Delgado-Zygmunt T J, Arbab M AR, Shiokawa Y, Svendgaard N Aa. Cerebral blood flow and glucose metabolism study during the late phase of cerebral vasospasm in the squirrel monkey. Br J Neurosurg, in press
  • Delgado-Zygmunt T J, Arbab M AR, Shiokawa Y, Svendgaard N Aa. A primate model for acute and late cerebral vasospasm: angiographical findings. Acta Neurochir, in press
  • Sakurada O, Kennedy C, Jehle J, Brown J D, Carbin G L, Sokoloff L. Measurement of local cerebral blood flow with iodo I4C antipyrine. Am J Appl Physiol 1978; 234: H59–H66
  • Gjedde A, Hansen A J, Siemkowitcz E. Rapid simultaneous determination of regional blood flow and blood-brain glucose transfer in brain of rat. Acta Physiol Scand 1980; 108: 321–30
  • Sokoloff L, Reivich M, Kennedy C. The 14C deoxyglucose method for measurement of local cerebral glucose utilisation: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 1977; 28: 897–917
  • Diemer N H, Rosenorn J. Determination of local cerebral blood flow and glucose metabolism or transfer by means of a double autoradiographic method. J Cereb Blood Flow Metab 1981; 1: S72–S73, Suppl 1
  • Gjedde A, Diemer N H. Double-tracer study of the fine regional blood-brain glucose transfer in the rat by computer-assisted autoradiography. J Cereb Blood Flow Metab 1985; 5: 282–9
  • Kennedy C, Sakurada O, Shinohara M, Jehle J, Sokoloff L. Local cerebral glucose utilisation in the normal conscious macaque monkey. Ann Neurol 1978; 4: 293–301
  • Winer B J. Statistical Principles in Experimental Design. McGraw-Hill, New York 1962
  • Fergusson G A. Statistical Analysis in Psychology and Education. McGraw-Hill, New York 1966
  • Brizzee K R, Dunlap W P. Local brainstem glucose utilization in the squirrel monkey. Brain Res Bull 1987; 19: 191–4
  • Blaire R DG, Waltz A G. Regional cerebral blood flow during acute ischemia. Neurology 1970; 20: 802–80
  • Sundt T M, Waltz A G. Cerebral ischemia and reactive hyperemia. Circ Res 1971; 28: 426–33
  • Hosokawa S, Iguchi T, Caveness W F. Effects of manipulation of the sensorimotor system on focal motor seizures in the monkey. Ann Neurol 1980; 7: 222–9
  • Ingvar M, Siesjo B K. Measurements of brain glucose utilization in pathological states: problems and pitfalls. The Metabolism of the Human Brain Studied with Positron Emission Tomography, T Greitz. Raven Press, New York 1985
  • Pardridge W M, Crane P D, Mietus L J, Oldendorf W H. Nomogram for 2-deoxyglucose lumped constant for rat brain cortex. J Cereb Blood Flow Metab 1982; 2: 197–202
  • Delgado T J, Arbab M AR, Diemer N H, Svendgaard N Aa. Subarachnoid hemorrhage in the rat: cerebral blood flow and metabolism during the late phase of cerebral vasospasm. J Cereb Blood Flow Metab 1986; 6: 590–9
  • Fujishima M, Sugi T, Choki J, Yamaguchi T, Omae T. Cerebrospinal fluid and arterial lactate, pyruvate and acid-base balance in patients with intracranial hemorrhage. Stroke 1975; 6: 707–14
  • Grubb R L, Raichle M E, Eichling J O, Gado M H. Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow and oxygen utilisation in humans. J Neurosurg 1977; 46: 446–53
  • Kågström E, Granholm L, Rehncrona S. Metabolic changes in CSF after subarachnoid hemorrhage. Ex-cerpta Medica International Congress Series 1973; 293: 156
  • Pasqualin A, Vivenza C, Rizzotti P, Cocco C, Cavaraz-Zani P, Da Pian R. Serial biochemical changes in the cerebrospinal fluid during the early stages of subarachnoid hemorrhage: relationship with cerebral vasospasm. Timing of Aneurysm Surgery, L M Auer. Walter de Gruyter, Berlin 1985; 403–10
  • Sahlin C, Brismar J, Delgado T, Owman C, Salford L G, Svendgaard N Aa. Cerebrovascular and metabolic changes during the delayed vasospasm following experimental subarachnoid hemorrhage in baboons, and treatment with calcium antagonist. Brain Res 1987; 403: 313–22
  • Marzatico F, Gaetani P, Silvani V, Lombardi D, Sinforniani E, Baena R R. Experimental isobaric subarachnoid hemorrhage: regional mitochondrial function during the acute and late phase. Surg Neurol 1990; 34: 294–300
  • Edvinsson L, Delgado-Zygmunt Ekman R, Jansen I, Svendgaard N Aa, Uddman R. Involvement of perivascular sensory fibers in the pathophysiology of cerebral vasospasm following subarachnoid hemorrhage. J Cereb Blood Flow Metab 1990; 10: 602–7
  • Linnik M D, Sakas D E, Uhl G R, Moskowitz M A. Subarachnoid blood and headache: altered trigeminal tachykinin gene expression. Ann Neural 1989; 25: 179–84
  • Dietrich W D, Ginsberg M D, Busto R, Smith D W. Metabolic alterations in rat somatosensory cortex following unilateral vibrissal removal. J Neurosci 1985; 5: 874–80
  • Dietrich W D, Durham D, Lowry O H, Woolsey T A. “Increased” sensory stimulation leads to changes in energy-related enzymes in the brain. J Neurosci 1982; 2: 1608–13
  • Edvinsson L, McCulloch J, Kingman T A, Uddman R. On the functional role of the trigeminocerebrovascular system in the regulation of cerebral circulation. Neural Regulation of Brain Circulation, C Owman, J E Hardebo. Elsevier, Amsterdam 1986; 407–18
  • Black R G. A laboratory model for trigeminal neuralgia. Advances in Neurology, J J Bonica. Raven Press, New York 1974; Vol. 4: 651–8
  • Delgado T J, Diemer N H, Svendgaard N Aa. Subarachnoid hemorrhage in the rat: cerebral blood flow and glucose metabolism after selective lesions of the catecholamine systems in the brainstem. J Cereb Blood Flow Metab 1986; 6: 600–6
  • Heilbrun M P, Olsen J, Lassen N A. Regional cerebral blood flow studies in subarachnoid hemorrhage. J Neurosurg 1972; 37: 36–44
  • Ishi R. Regional cerebral blood flow in patients with ruptured intracranial aneurysms. J Neurosurg 1979; 50: 587–94
  • Petruk K C, West G R, Marriott M R, McLntyre J W, Overton T A, Weir B KA. Cerebral blood flow following induced subarachnoid hemorrhage in the monkey. J Neurosurg 1972; 37: 316–24
  • Suzuki N, Hardebo J E, Kåhrström J, Owman Ch. Effects on cortical blood flow of electrical stimulation of trigeminal cerebrovascular nerve fibers in the rat. Acta Physiol Scand 1990; 138: 307–15
  • Goadsby P J, Lambert G A, Lance J W. Stimulation of the trigeminal ganglion increases flow in the extracerebral but not the cerebral circulation of the monkey. Brain Res 1986; 381: 63–7
  • Goadsby P J, Duckworth J W. Effect of stimulation of trigeminal ganglia on regional cerebral blood flow in cats. Am J Physiol 1987; 253: R270–R274
  • Lambert G A, Goadsby P J, Zagami A S, Duckworth J W. Comparative effects of stimulation of the trigeminal ganglion and the superior sagittal sinus on cerebral blood flow and evoked potentials in the cat. Brain Res 1988; 453: 143–9
  • Chan C, Huffaker G. Herpes zoster ophthalmicus with contralateral hemiparesis. A case report and review of the literature. J. Clin Neurol Ophthalmol 1983; 3: 111–14
  • Hilt D C, Buchholz D, Krumholz A, Weiss H, Wolin-Sky J S. Herpes zoster ophthalmicus and delayed contralateral hemiparesis caused by cerebral angiitis: diagnosis and management approaches. Ann Neurol 1983; 14(5)543–53

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.