283
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Lipoic acid and bone marrow derived cells therapy induce angiogenesis and cell proliferation after focal brain injury

, , , , , & show all
Pages 380-395 | Received 28 Jan 2014, Accepted 02 Oct 2014, Published online: 10 Nov 2014

References

  • Maegele M, Schaefer U. Stem cell-based cellular replacement strategies following traumatic brain injury (TBI). Minimally Invasive Therapy & Allied Technology 2008;17:119–131
  • Reilly P. The impact of neurotrauma on society: An international perspective. Progress in Brain Research 2007;161:3–9
  • Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic brain injuries: A global perspective. NeuroRehabilitation 2007;22:341–353
  • Rossnagel K, Nolte C, Muller-Nordorn J, Junfehulsing G, Selim D, Bruggenjurgen B. Medical resource use ans costs of health care after acute stroke in Germany. European Journal of Neurology 2005;11:862–868
  • Cederberg D, Siesjo P. What has inflammation to do with traumatic brain injury? Childs Nervous System 2010;26:221–226
  • DeKosky ST, Kochanek PM, Clark RS, Ciallella JR, Dixon CE. Secondary injury after head trauma: Subacute and long-term mechanisms. Seminars in Clinical Neuropsychiatry 1998;3:176–185
  • McIntosh TK, Smith DH, Meaney DF, Kotapka MJ, Gennarelli TA, Graham DI. Neuropathological sequelae of traumatic brain injury: Relationship to neurochemical and biomechanical mechanisms. Laboratory Investigation 1996;74:315–342
  • Raslan F, Albert-Weissenberger C, Ernestus RI, Kleinschnitz C, Siren AL. Focal brain trauma in the cryogenic lesion model in mice. Experimental & Translational Stroke Medicine 2012;4:6--10
  • Sauerbeck A, Gao J, Readnower R, Liu M, Pauly JR, Bing G, Sullivan PG. Pioglitazone attenuates mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Experimental Neurology 2011;227:128–135
  • Plesnila N, Friedrich D, Eriskat J, Baethmann A, Stoffel M. Relative cerebral blood flow during the secondary expansion of a cortical lesion in rats. Neuroscience Letters 2003;345:85–88
  • Touzani O, Roussel S, MacKenzie ET. The ischaemic penumbra. Current Opinion in Neurology 2001;14:83–88
  • Chesnut RM. Secondary brain insults after head injury: Clinical perspectives. New Horizons 1995;3:366–375
  • Jeremitsky E, Omert L, Dunham CM, Protetch J, Rodriguez A. Harbingers of poor outcome the day after severe brain injury: Hypothermia, hypoxia, and hypoperfusion. Journal of Trauma 2003;54:312–319
  • Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience 2004;129:1021–1029
  • Davenport R, Dennis M. Neurological emergencies: Acute stroke. Journal of Neurology, Neurosurgery & Psychiatry 2000;68:277–288
  • Harting MT, Baumgartner JE, Worth LL, Ewing-Cobbs L, Gee AP, Day MC, Cox CS Jr. Cell therapies for traumatic brain injury. Neurosurgical Focus 2008;24:E18--39
  • Vannucci RC, Perlman JM. Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics 1997;100:1004–1014
  • Tolias CM, Bullock MR. Critical appraisal of neuroprotection trials in head injury: What have we learned? NeuroRx 2004;1:71–79
  • Marklund N, Bakshi A, Castelbuono D, Conte V, McIntosh TK. Evaluation of pharmacologicaltreatment strategies in traumatic brain injury. Current Pharmaceutical Design 2006;12:1645–1680
  • Goraca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B. Lipoic acid - biological activity and therapeutic potential. Pharmacological Reports 2011;63:849–858
  • Rocamonde B, Paradells S, Barcia JM, Barcia C, Garcia Verdugo JM, Miranda M, Romero Gomez FJ, Soria JM. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury. Neuroscience 2012;224:102–115
  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Medicine 2002;8:963–970
  • Bjorklund A, Lindvall O. Cell replacement therapies for central nervous system disorders. Nature Neuroscience 2000;3:537–544
  • Satoshi K, Hideo S, Kiyohiro H, Yoshinobu I. Autologous bone marrow stromal cell transplantation for central nervous system disorders- Recent progress and perspective for clinical application. Journal of Stem Cells and Regenerative Medicine 2011;7:2–13
  • Savitz SI, Fisher M. Future of neuroprotection for acute stroke: In the aftermath of the SAINT trials. Annals of Neurology 2007;61:396–402
  • Beck H, Voswinckel R, Wagner S, Ziegelhoeffer T, Heil M, Helisch A, Schaper W, Acker T, Hatzopoulos AK, Plate KH. Participation of bone marrow-derived cells in long-term repair processes after experimental stroke. Journal of Cerebral Blood Flow & Metabolism 2003;23:709–717
  • Hess DC, Abe T, Hill WD, Studdard AM, Carothers J, Masuya M, Fleming PA, Drake CJ, Ogawa M. Hematopoietic origin of microglial and perivascular cells in brain. Experimental Neurology 2004;186:134–144
  • Priller J, Flugel A, Wehner T, Boentert M, Hass C, Prinz M, Fernandez-Klett F, Prass K, Bechmann I, de Boer B, et al. Targeting gene-modified hematopoietic cells to the central nervous system:use of green fluorescent protein uncovers microglial engraftment. Nature Medicine 2001;7:1356–1361
  • Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J. Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke 2002;33:1362–1368
  • Zhang ZG, Zhang L, Jiang Q, Chopp M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circulation Research 2002;90:284–288
  • Eglitis MA, Dawson D, Park KW, Mouradian MM. Targeting of marrow-derived astrocytes to the ischemic brain. Neuroreport 1999;10:1289–1292
  • Cogle CR, Yachnis AT, Laywell ED, Zander DS, Wingard JR, Steindler DA, Scott EW. Bone marrow transdifferentiation in brain after transplantation: A retrospective study. Lancet 2004;363:1432–1437
  • Kokovay E, Li L, Cunningham LA. Angiogenic recruitment of pericytes from bone marrow after stroke. Journal of Cerebral Blood Flow & Metabolism 2006;26:545–555
  • Tate CC, Case CC, editors. Mesenchymal stromal cells to treat brain injury, advanced topics in neurological disorders. Mountain View, CA: SanBio, Inc.; 2012
  • Kuhn HG, Palmer TD, Fuchs E. Adult neurogenesis: A compensatory mechanism for neuronal damage. European Archives of Psychiatry Clinical Neuroscience 2001;251:152–158
  • Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. Journal of Neuroscience 1997;17:5820–5829
  • Pencea V, Bingaman K, Wiegand S, Luskin M. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. Journal of Neuroscience 2001;21:6706–6717
  • Chen J, Li Y, Wang L, Lu M, Chopp M. Caspase inhibition by Z-VAD increases the survival of grafted bone marrow cells and improves functional outcomes after MCAo in rats. Journal of Neurological Sciences 2002;199:17–24
  • Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. Journal of Neuroscience Research 2003;73:778–786
  • Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, et al. Human marrow stromal cell therapy for stroke in rat: Neurotrophins and functional recovery. Neurology 2002;59:514–523
  • Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam S, Chopp M. Intravenous bone marrow stromal cell therapy reduces apoptosis and promote endogenous cell proliferatino after stroke in female rat. Journal of Neuroscience Research 2003;73:778–786
  • Zhang J, Li Y, Chen J, Yang M, Katakowski M, Lu M, Chopp M. Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Research 2004;1030:19–27
  • Kawabori M, Kuroda S, Suqiyama T, Ito M, Shichinohe H, Houkin K, Kuge Y, Tamaki N. Intracerebral, but no intravenous, transplantation of bone marrow stromal cells enhances functional recovery in rat cerebral infarct: An optical imaging study. Neuropathology 2012;32:217–226
  • Quintana A, Giralt M, Molinero A, Campbell IL, Penkowa M, Hidalgo J. Analysis of the cerebral transcriptome in mice subjected to traumatic brain injury: Importance of IL-6. Neuroimmunomodulation 2007;14:139–143
  • Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. Amsterdam, Netherlands: Elsevier Academic Press; 2004
  • Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, Li Y, Raisman G. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell and Tissue Research 2012;349:169–180
  • Silver J, Miller JH. Regeneration beyond the glial scar. Nature Reviews Neuroscience 2004;5:146–156
  • Klatzo I, Piraux A, Laskowsky EJ. The relationship between edema, blood brain barrier and tissue elements in a local brain injury. Journal of Neuropathology & Experimental Neurology 1958;17:548–564
  • Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to cortical injury. I: Methodology and local effects of contusions in the rat. Brain Research 1981;211:67–77
  • McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, Faden AL. Traumatic brain injury in the rat: Characterization of a lateral fluid-percussion model. Neuroscience 1989;28:233–244
  • Cernak I. Animal models of head trauma. NeuroRx 2005;2:410–422
  • Siren AL, Radyushkin K, Boretius S, Kammer D, Riechers CC, Natt O, Sargin D, Watanabe T, Sperling S, Michaelis T, et al. Global brain atrophy after unilateral parietal lesion and its prevention by erythropoietin. Brain 2006;129:480–489
  • Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radical Biology & Medicine 1995;19:227–250
  • Gonzalez-Perez O, Gonzalez-Castaneda RE, Huerta M, Luquin S, Gómez-Pinedo U, Sanchez-Almaraz E, Navarro-Ruiz A, Garcia-Estrada J. Beneficial effects of alpha-lipoic acid plus vitamin E on neurological deficit, reactive gliosis and neuronal remodeling in the penumbra of the ischemic rat brain. Neuroscience Letters 2002;321:100–104
  • Schreibelt G, Musters RJ, Reijerkerk A, de Groot LR, Van der Pol SM, Hendrikx EM, Dopp ED, Dijkstra CD, Drukarch B, de Vries HE. Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity. Journal of Immunology 2006;177:2630–2637
  • Toklu HZ, Hakan T, Biber N, Solakoglu S, Ogunc AV, Sener G. The protective effect of alpha lipoic acid against traumatic brain injury in rats. Free Radiccal Research 2009;43:658–667
  • Freitas RM. The evaluation of effects of lipoic acid on the lipid peroxidation, nitrite formation and antioxidant enzymes in the hippocampus of rats after pilocarpine-induced seizures. Neuroscience Letters 2009;455:140–144
  • Toklu HZ, Hakan T, Biber N, Solakoglu S, Ogunc AV, Sener G. The proteticve effect of alpha lipoic acid against traumatic brain injury in rats. Free Radical Research 2009;43:658–667
  • Larghero P, Vene R, Minghelli S, Travaini G, Morini M, Ferrari N, Pfeffer U, Noonan DM, Albini A, Benelli R. Biological assays and genomic analysis reveal lipoic acid modulation of endothelial cell behavior and gene expression. Carcinogenesis 2007;28:1008–1020
  • Sharma A, Gokulchandran N, Chopra G, Kulkarni P, Lohia M, Badhe P, Jacob VC. Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life. Cell Transplantation 2012;21:S79–S90
  • Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke 2007;38:817–826
  • Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 2007;40:609–619
  • Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proceedings of the National Academy of Sciences 1998;95:3908–3913
  • Maruichi K, Kuroda S, Chiba Y, Hokari M, Shichinohe H, Hida K, Iwasaki Y. Transplanted bone marrow stromal cells improves cognitive dysfunction due to diffuse axonal injury in rats. Neuropathology 2009;29:422–432
  • Mahmood A, Lu D, Qu C, Goussev A, Chopp M. Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats. Journal of Neurosurgery 2006;104:272–277
  • Li Y, Chen J, Chopp M. Adult bone marrow transplantation after stroke in adults rats. Cell Transplant 2001;10:31–40
  • Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, Lu M, Savant-Bhonsale S, Chopp M. One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke 2007;38:2150–2156
  • Li Y, Chen J, Wang L, Lu M, Chopp M. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 2001b;56:1666–1672
  • Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, Lu M, Raginski K, Vanguri P, Smith A, et al. Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. Journal of Cerebral Blood Flow & Metabolism 2007;27:6–13
  • Zhao LR, Duan WM, Reyes M, Keene C, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurobiological deficits after grafting into the ischemic brain of rats. Experimental Neurology 2002;174:11–20
  • Mora-Lee S, Sirerol-Piquer MS, Gutierrez-Perez M, Gomez-Pinedo U, Roobrouck VD, Lopez T, Casado-Nieto M, Abizanda G, Rabena MT, Verfaille C, et al. Therapeutic effects of hMAPC and hMSC transplantation after stroke in mice. PLoS One 2012;7:e43683
  • Yang M, Wei X, Li J, Heine LA, Rosenwasser R, Iacovitti L. Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant 2010;19:1073–1084
  • Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circulation Research 2003;92:692–699
  • Font MA, Arboix A, Krupinski J. Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. Current Cardiology Reviews 2010;6:238–244
  • Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proceedings of the National Academy of Science USA 2005;102:18171–18176
  • Perry VH, Bell MD, Brown HC, Matyszak MK. Inflammation in the nervous system. Current Opinion in Neurology 1995;5:636–641
  • Glezer I, Rivest S. Glucocorticoids: Protectors of the brain during innate immune responses. Neuroscientist 2004;10:538–552
  • Giulian D. Ameboid microglia as effectors of inflammation in the central nervous system. Journal of Neuroscience Research 1987;18:155–171, 132–133
  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience 2005;8:752–758
  • Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314–1318
  • Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors 2004;22:123–131
  • Lipsky RH, Marini AM. Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Annals of the New York Academy of Sciences 2007;1122:130–143
  • Wu D. Neuroprotection in experimental stroke with targeted neurotrophins. NeuroRx 2005;2:120–128
  • Schabitz WR, Schwab S, Spranger M, Hacke W. Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. Journal of Cerebral Blood Flow & Metabolism 1997;17:500–506
  • Bonde S, Ekdahl CT, Lindvall O. Long-term neuronal replacement in adult rat hippocampus after status epilepticus despite chronic inflammation. European Journal of Neuroscience 2006;23:965–974
  • Mariotto S, Suzuki Y, Persichini T, Colasanti M, Suzuki H, Cantoni O. Cross-talk between NO and arachidonic acid in inflammation. Current Medicinal Chemistry 2007;14:1940–1944
  • Brown GC. Mechanism of inflamatory neurodegeneration: iNOS and NADPH ocidase. Biochemical Society Transactions 2007;35:1119–1121
  • Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. Journal of Neuroimmunology 2007;184:53–68
  • Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, Prockop DJ. Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inlammatory/immune responses. Proceedings of the National Academy of Science USA 2008;105:14638–14643
  • Mildner A, Schmidt H, Nitsche M, Merkel D, Hanish U, Mack M, Heikenwalder M, Brück W, Priller J, Prinz M. Microglia in the adult brain arise from Ly-6ChiCCR2+monocytes only under defined host conditions. Nature Neuroscience 2007;10:1544–1553
  • Cinelli P, Madani R, Tsuzuki N, Vallet P, Arras M, Zhao C, Oster-walder T, Rulicke T, Sonderegger P. Neuroserpin, a neuroprotective factor in focal ischemic stroke. Molecular & Cellular Neuroscience 2001;18:443–457
  • Dirnagl U, Iadecola C, Moskowitz M. Pathobiology of ischemic stroke: An integrated view. Trends in Neuroscience 1999;22:391–397
  • Kim W, Mohney R, Wilson B, Jeohn G, Liu B, Hong J. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: Role of microglia. Journal of Neuroscience 2000;20:6309–6316
  • Tikka TM, Koistinaho JE. Minocycline provides neuroprotection against N-methil-D-aspartate neurotoxicity by inhibiting microglia. Journal of Immunology 2001;166:7527–7533
  • Dong W, Li N, Gao D, Zhen H, Zhang X, Li F. Resveratrol attenuates ischemic brain damage in the delayed phase after stroke and induces messenger RNA and protein express for angiogenic factors. Journal of Vascular Surgery 2008;48:709–714
  • Thau-Zuchman O, Shohami E, Alexandrovich AG, Leker RR. Combination of vascular endothelial and fibroblast growth factor 2 for induction of neurogenesis and angiogenesis after traumatic brain injury. Journal of Molecular Neuroscience 2012;47:166–172
  • Slevin M, Kumar P, Gaffney J, Kumar S, Krupinski J. Can angiogenesis be exploited to improve stroke outcome? Mechanisms and therapeutic potential. Clinical Science (London) 2006;111:171–183
  • Lizasoain I, Moro MA, Fernández-López D, Pradillo JM, Sobrino T, Castillo J. Plasticidad, neurogénesis y angiogénesis. 2007. Fisiopatología de la isquemia cerebral. Barcelona (España)
  • Guo F, Lv S, Lou Y, Tu W, Liao W, Wang Y, Deng Z. Bone marrow stromal cells enhance the angiogenesis in ischaemic cortex after stroke: Involvement of notch signalling. Cell Biology International 2012;36:997–1004
  • Ashwell KW, Hardman C, Paxinos G. The claustrum is not missing from all monotreme brains. Brain, Behavior & Evolution 2004;64:223–141
  • Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, Sawamoto K. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 2010;28:545–554
  • Capilla-Gonzalez V, Gil-Perotin S, Garcia-Verdugo JM. Postnatal exposure to N-ethyl-N-nitrosurea disrupts the subventricular zone in adult rodents. European Journal of Neuroscience 2010;32:1789–1799

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.