317
Views
35
CrossRef citations to date
0
Altmetric
Research Article

Chemokine Profile of Human Serum from Whole Blood: Migratory Effects of CXCL-10 and CXCL-11 on Human Mesenchymal Stem Cells

, , , , , , & show all
Pages 113-122 | Published online: 15 Dec 2009

REFERENCES

  • Buckwalter, J.A., and Mankin, H.J. (1998). Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr. Course Lect., 47:487–504.
  • Buckwalter, J.A. (1998). Articular cartilage: injuries and potential for healing. J. Orthop. Sports Phys. Ther., 28:192–202.
  • Hunziker, E.B. (2002). Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cart., 10:432–463.
  • Steadman, J.R., Rodkey, W.G., and Rodrigo, J.J. (2001). Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin. Orthop. Relat. Res., 391:S362–369.
  • Shapiro, F., Koide, S., and Glimcher, M.J. (1993). Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J. Bone Joint. Surg. Am., 75:532–553.
  • Barry, F.P. (2003). Biology and clinical applications of mesenchymal stem cells. Birth Defects Res. C Embryo Today, 69:250–256.
  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284:143–147.
  • Pittenger, M.F. (2008). Mesenchymal stem cells from adult bone marrow. Methods Mol. Biol., 449:27–44.
  • Brooke, G., Cook, M., Blair, C., Han, R., Heazlewood, C., Jones, B., Kambouris, M., Kollar, K., McTaggart, S., Pelekanos, R., Rice, A., Rossetti, T., and Atkinson, K. (2007). Therapeutic applications of mesenchymal stromal cells. Sem. Cell Dev. Biol., 18:846–858.
  • Caplan, A.I., and Bruder, S.P. (2001). Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol. Med., 7:259–264.
  • Mauney, J.R., Volloch, V., and Kaplan, D.L. (2005). Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospects. Tissue Eng., 11:787–802.
  • Horwitz, E.M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Deans, R.J., Krause, D.S., and Keating, A. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7:393–395.
  • Wakitani, S., Mitsuoka, T., Nakamura, N., Toritsuka, Y., Nakamura, Y., and Horibe, S. (2004). Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant., 13:595–600.
  • Kuroda, R., Ishida, K., Matsumoto, T., Akisue, T., Fujioka, H., Mizuno, K., Ohgushi, H., Wakitani, S., and Kurosaka, M. (2007). Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthr. Cart., 15:226–231.
  • Wakitani, S., Nawata, M., Tensho, K., Okabe, T., Machida, H., and Ohgushi, H. (2007). J. Tissue Eng. Regen. Med., 1:74–79.
  • Schimming, R., and Schmelzeisen, R. (2004). Tissue-engineered bone for maxillary sinus augmentation. J. Oral Maxillofac. Surg., 62:724–729.
  • Groger, A., Klaring, S., Merten, H.A., Holste, J., Kaps, C., and Sittinger, M. (2003). Tissue engineering of bone for mandibular augmentation in immunocompetent minipigs: preliminary study. Scand. J. Plast. Reconstr. Surg. Hand. Surg., 37:129–133.
  • Putzier, M., Strube, P., Funk, J., Gross, C., and Perka, C. (2008). Periosteal cells compared with autologous cancellous bone in lumbar segmental fusion. J. Neurosurg. Spine, 8:536–543.
  • Giordano, A., Galderisi, U., and Marino, I.R. (2007). From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J. Cell Physiol., 211:27–35.
  • Erggelet, C., Neumann, K., Endres, M., Haberstroh, K., Sittinger, M., and Kaps, C. (2007). Regeneration of ovine articular cartilage defects by cell-free polymer-based implants. Biomaterials, 28:5570–5580.
  • Ringe, J., Strassburg, S., Neumann, K., Endres, M., Notter, M., Burmester, G.R., Kaps, C., and Sittinger, M. (2007). Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J. Cell Biochem., 101:135–146.
  • Mishima, Y., and Lotz, M. (2008). Chemotaxis of human articular chondrocytes and mesenchymal stem cells. J. Orthop. Res., 26:1407–1412.
  • Fiedler, J., Roderer, G., Gunther, K.P., and Brenner, R.E. (2002). BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J. Cell Biochem., 87:305–312.
  • Fiedler, J., Brill, C., Blum, W.F., and Brenner, R.E. (2006). IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem. Biophys. Res. Commun., 345:1177–1183.
  • Schmidt, A., Ladage, D., Schinkothe, T., Klausmann, U., Ulrichs, C., Klinz, F.J., Brixius, K., Arnhold, S., Desai, B., Mehlhorn, U., Schwinger, R.H., Staib, P., Addicks, K., and Bloch, W. (2006). Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem. Cells, 24:1750–1758.
  • Sordi, V., Malosio, M.L., Marchesi, F., Mercalli, A., Melzi, R., Giordano, T., Belmonte, N., Ferrari, G., Leone, B.E., Bertuzzi, F., Zerbini, G., Allavena, P., Bonifacio, E., and Piemonti, L. (2005). Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 106:419–427.
  • Fernandez, E.J., and Lolis, E. (2002). Structure, function, and inhibition of chemokines. Annu. Rev. Pharmacol. Toxicol., 42:469–499.
  • Murphy, P.M., Baggiolini, M., Charo, I.F., Hebert, C.A., Horuk, R., Matsushima, K., Miller, L.H., Oppenheim, J.J., and Power, C.A. (2000). International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev., 52:145–176.
  • Jin, T., Xu, X., and Hereld, D. (2008). Chemotaxis, chemokine receptors and human disease. Cytokine, 44:1–8.
  • Ponte, A.L., Marais, E., Gallay, N., Langonne, A., Delorme, B., Herault, O., Charbord, P., and Domenech, J. (2007). The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells, 25:1737–1745.
  • Kalwitz, G., Endres, M., Neumann, K., Skriner, K., Ringe, J., Sezer, O., Sittinger, M., Haupl, T., and Kaps, C. (2009). Gene expression profile of adult human bone marrow-derived mesenchymal stem cells stimulated by the chemokine CXCL7. Int. J. Biochem. Cell Biol., 41:649–658.
  • Wynn, R.F., Hart, C.A., Corradi-Perini, C., O’Neill, L., Evans, C.A., Wraith, J.E., Fairbairn, L.J., and Bellantuono, I. (2004). A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104:2643–2645.
  • Von Luttichau, I., Notohamiprodjo, M., Wechselberger, A., Peters, C., Henger, A., Seliger, C., Djafarzadeh, R., Huss, R., and Nelson, P.J. (2005). Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells Dev., 14:329–336.
  • Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A.M., and Silberstein, L.E. (2006). Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 24: 1030–1041.
  • Haynesworth, S.E., Goshima, J., Goldberg, V.M., and Caplan, A.I. (1992). Characterization of cells with osteogenic potential from human marrow. Bone, 13:81–88.
  • Endres, M., Neumann, K., Haupl, T., Erggelet, C., Ringe, J., Sittinger, M., and Kaps, C. (2007). Synovial fluid recruits human mesenchymal progenitors from subchondral spongious bone marrow. J. Orthop. Res., 25:1299–1307.
  • Kaps, C., Bramlage, C., Smolian, H., Haisch, A., Ungethum, U., Burmester, G.R., Sittinger, M., Gross, G., and Haupl, T. (2002). Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis. Rheum., 46:149–162.
  • Binger, T., Stich, S., Kristin, A., Kaps, C., Sezer, O., Notter, M., Sittinger, M., and Ringe, J. (2009). Migration potential and gene expression profile of human mesenchymal stem cells induced by CCL25. Exp. Cell Res., 315:1468–79.
  • Granero-Molto, F., Weis, J.A., Longobardi, L., and Spagnoli, A. (2008). Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opin. Biol. Ther., 8:255–268.
  • Barry, F.P. and Murphy, J.M. (2004). Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol., 36:568–584.
  • Stich, S., Loch, A., Leinhase, I., Neumann, K., Kaps, C., Sittinger, M., and Ringe, J. (2008). Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13. Eur. J. Cell Biol., 87:365–376.
  • Buckwalter, J.A., Martin, J.A., Olmstead, M., Athanasiou, K.A., Rosenwasser, M.P., and Mow, V.C. (2003). Osteochondral repair of primate knee femoral and patellar articular surfaces: implications for preventing post-traumatic osteoarthritis. Iowa Orthop. J., 23:66–74.
  • Buckwalter, J.A., and Brown, T.D. (2004). Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin. Orthop. Relat. Res., 423:7–16.
  • Kramer, J., Bohrnsen, F., Lindner, U., Behrens, P., Schlenke, P., and Rohwedel, J. (2006). In vivo matrix-guided human mesenchymal stem cells. Cell Mol. Life Sci., 63:616–626.
  • Chevrier, A., Hoemann, C.D., Sun, J., and Buschmann, M.D. (2007). Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthr. Cart., 15:316–327.
  • Hoemann, C.D., Sun, J., McKee, M.D., Chevrier, A., Rossomacha, E., Rivard, G.E., Hurtig, M., and Buschmann, M.D. (2007). Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthr. Cart., 15:78–89.
  • Behrens, P. (2005). Matrix-coupled microfracture—a new concept for cartilage defect repair. Arthroskopie, 18:193–197.
  • Croitoru-Lamoury, J., Lamoury, F.M., Zaunders, J.J., Veas, L.A., and Brew, B.J. (2007). Human mesenchymal stem cells constitutively express chemokines and chemokine receptors that can be upregulated by cytokines, IFN-beta, and Copaxone. J. Interferon Cytokine Res., 27:53–64.
  • Zhang, G., Nakamura, Y., Wang, X., Hu, Q., Suggs, L.J., and Zhang, J. (2007). Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarcted heart. Tissue Eng., 13:2063–2071.
  • Yuan, G.H., Masuko-Hongo, K., and Nishioka, K. (2001). Role of chemokines/chemokine receptor systems in cartilage degradation. Drug News Perspect, 14:591–600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.