171
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Effect of Decorin and Dermatan Sulfate on the Mechanical Properties of a Neocartilage

, , &
Pages 159-170 | Received 12 Jun 2009, Accepted 09 Jul 2009, Published online: 15 Dec 2009

REFERENCES

  • Roughly, P.J. (2006). The structure and function of cartilage proteoglycans. Euro. Cells Mater., 12, 92–101.
  • Poole, A.R., Rosenberg, L.C., Reiner, A., Ionescu, M., Bogoch, E., and Roughley, P.J. (1996). Contents and distributions of the proteoglycans decorin and biglycan in normal and osteoarthritic human articular cartilage. J. Orthop. Res., 14(5), 681–689.
  • Scott, J.E. (1992). Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB, 6, 2639–2645.
  • Moscatello, D.K., Santra, M., Mann, D.M., McQuillan, D.J., Wong, A.J., and Iozzo, R.V. (1998). Decorin suppresses tumor cell growth by activating the epidermal growth factor receptor. J. Clin. Invest., 101(2), 406–412.
  • Ferdous, Z., Wei, V.M., Iozzo, R., Hook, M., and Grande-Allen, K.J. (2007). Decorin-transforming growth factor-β interaction regulate matrix organization and mechanical characteristics of three-dimensional collagen matrices. J. Biol. Chem., 282(49), 35887–35898.
  • Kokenyesi, R., and Woessner, Jr, J.F. (1990). Relationship between dilatation of the rat uterine cervix and a small dermatan sulfate proteoglycan. Biol. Reprod., 42, 87–97.
  • Gotte, M., and Kresse, H. (2005). Defective glycosaminoglycan substitution of decorin in a patient with progeroid syndrome is a direct consequence of two point mutations in the galactosyltransferase I (β4GalT-7) gene. Biochem. Gen., 43(1), 65–77.
  • Seidler, D.G., (2006). Defective glycosylation of decorin and biglycan, altered collagen structure, and abnormal phenotype of the skin fibroblasts of an Ehlers-Danlos syndrome patient carrying the novel Arg270Cys substitution in galactosyltransferase I (β4GalT-7). J. Mol. Med., 84, 583–594.
  • Vogel, K.G., and Trotter, J.A. (1987). The effects of proteoglycans on the morphology of collagen fibrils formed in vitro. Collagen Rel. Res., 7, 105–114.
  • Iwasaki, S., (2008). The modulation of collagen fibril assembly and its structure by decorin: an electron microscopic study. Arch. Histol. Cytol., 71(1), 37–44.
  • Ruhland, C., (2007). The glycosaminoglycan chain of decorin plays an important role in collagen fibril formation at the early stages of fibrillogenesis. FEBS J., 274, 4246–4255.
  • Raspanti, M., Viola, M., Sonaggere, M., Tira, M.E., and Tenni, R. (2007). Collagen fibril structure is affected by collagen concentration and decorin. Biomacromolecules, 8, 2087–2091.
  • Zhang, G., (2006). Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J. Cell Biochem., 98, 1436–1449.
  • Nakamura, N., (2000). Decorin antisense gene therapy improves functional healing of early rabbit ligament scar with enhanced collagen fibrillogenesis in vivo. J. Orthop. Res., 18, 517–523.
  • Scott, J.E., and Stockwell, R.A. (2006). Cartilage elasticity resides in shape module decoran and aggrecan sumps of damping fluid: implications in osteoarthrosis. J. Physiol., 574, 643–650.
  • Redaelli, A., Vesentini, S., Soncini, M., Vena, P., Mantero, S., and Montevecchi, F.M. (2003). Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons—a computational study from molecular to microstructural level. J. Biomech., 36, 1555–1569.
  • Liu, X., Yeh M.-L., Lewis, J.L., and Luo, Z.-P. (2005). Direct measurement of the rupture force of single pair of decorin interactions. Biochem. Biophys. Res. Commun., 338, 1342–1345.
  • Elliott, D.M., Robinson, P.S., Gimbel, J.A., (2003). Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann. Biomed. Eng., 31, 599–605.
  • Robinson, P.S., Lin, T.W., Reynolds, P.R., Derwin, K.A., Iozzo, R.V., and Soslowsky, L.J. (2004). Strain rate sensitive mechanical properties of tendon fascicles from mice with genetically engineered alterations in collagen and decorin. J. Biomech. Engr., 126, 252–257.
  • Lujan, T.J., Underwood, C.J., Henninger, H.B., Thompson, B.M., and Weiss, J.A. (2007). Effect of dermatan sulfate glycosaminoglycans on the quasi-static material properties of the human medial collateral ligament. J. Orthop. Res., online pub DOI 10.1002/jor.20351.
  • Hall, M.L., Krawczak, D.A., Simha, N.K., and Lewis, J.L. (2008). Effect of dermatan sulfate on the indentation and tensile properties of articular cartilage. Osteoarthr. Cart., in press.
  • Fedewa, M.M., Oegema, T.R., Jr, Schwartz, M.H., MacLeod, A., and Lewis, J.L. (1998). Chondrocytes in culture produce a mechanically functional tissue. J. Orthop. Res., 16, 227–236.
  • Masuda, K., Sah, R.L., Hejna, M.J., and Thonar, E.J. (2003). A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: the alginate-recovered-chondrocyte (ARC) method. J. Orthop. Res., 21(1), 139–48.
  • Krusius, T., andRuoslahti, E. (1986). Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA. Proc. Nat. Acad. Sci. USA. 83, 7683–7687.
  • Schroeder, T.M., Kahler, R.A., Li, X., and Westendorf, J.J. (2004). Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J. Biol. Chem., 279, 41998–42007.
  • Kahler, R.A., and Westendorf, J.J. (2003). Lymphoid enhancer factor-1 and beta-catenin inhibit Runx2-dependent transcriptional activation of the osteocalcin promoter. J. Biol. Chem., 278, 11937–11944.
  • Chandrasekhar, S., Esterman, M., and Hoffman, H. (1987). Microdetermination of proteoglycans and glycosaminoglycans in the presence of guanidine hydrochloride. Anal. Biochem., 161, 103.
  • Labarca, C., and Paigen, K. (1980). A simple, rapid, and sensitive DNA assay procedure. Anal. Biochem., 102, 344.
  • Keane, M., Belperio, J., Arenberg, D., Burdick, M., Xu, Z., Xue, Y., and Strieter, R. (1999). IFN-gamma-inducible protein-10 attenuates bleomycin-induced pulmonary fibrosis via inhibition of angiogenesis. J. Immunol., 163, 5686.
  • Scott, P.G., Dodd, C.M., and Pringle, G.A. (1993). Mapping the locations of the epitopes of five monoclonal antibodies to the core protein of dermatan sulfate proteoglycan II (decorin). J. Biol. Chem., 268(16), 11558–11564.
  • Wardale, R., and Duance, V. (1993). Quantification and immunolocalisation of porcine articular and growth plate cartilage collagens. J. Cell Sci., 105, 975.
  • Reno, C., Marchuk, L., Sciore, P., Frank, C., and Hart, D. (1997). Rapid isolation of total RNA from small samples of hypocellular, dense connective tissues. Biotechniques, 22, 1082.
  • Lewis, J.L., Johnson, S.L., and Oegema, Jr, T.R. (2002). Interfibrillar collagen binding exists in matrix produced by chondrocytes in culture: evidence by electron microscopy. Tissue Eng., 8, 989–995.
  • Hayes, W.C., Keer, L.M., Hermann, G., and Mockros, L.F. (1972). A mathematical analysis for indentation tests of articular cartilage. J. Biomech., 5, 541–551.
  • Chiravarambath, S., Simha, N.K., Namani, R., and Lewis, J.L. (2008). Poroviscoelastic cartilage properties in the mouse from indentation. J. Biomech. Engr., in press.
  • Scott, J.E. (2003). Elasticity in extracellular matrix ‘shape modules’ of tendon, cartilage etc. A sliding proteoglycan-filament model. J. Physiol., 553, 335–343.
  • Pins, G.D., Christiansen, D.L., Patel, R., and Silver, F.H. (1997). Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys. J., 73, 2164–2172.
  • Vogel, K.G., Paulsson, M., andHeinegard, D. (1984). Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem. J., 223, 587–597.
  • Kempson, B.E., Tuke, M.A., Dingle, J.T., Barrett, A.J., and Horsfield, P.H. (1976). The effects of proteolytic enzymes on the mechanical properties of adult human articular cartilage. Biochi. Biophy. Acta, 428, 741–760.
  • DiSilvestro, M.R., and Suh, J.-K.F. (2002). Biphasic poroviscoelastic characteristics of proteoglycan-depleted articular cartilage: simulation of degeneration. Anals Biomed. Engr., 30, 792–800.
  • Laasanen, M.S., (2003). Biomechanical properties of knee articular cartilage. Biorheology, 40, 133–140.
  • Simha, N.K., Fedewa, M., Leo, P.H., Lewis, J.L., and Oegema T. (1999). A composites theory predicts the dependence of stiffness of cartilage culture tissues on collagen volume fraction. J. Biomech., 32, 503–509.
  • Danielson, K.G., Baribault, H., Holmes, D.F., Graham, H., Kadler, K.E., and Iozzo, R.V. (1997). Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J. Cell Biol., 136, 729–743.
  • Galois, L., (2006). Bovine chondrocyte behavior in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression. Biomaterials, 27, 79–90.
  • Budde, M., (2005). Altered integration of Matrilin-3 into cartilage extracellular matrix in the absence of collagen IX. Mol. Cell Biol., 25(23), 10465–10478.
  • Sandell, L.J., Heinegard, D., and Hering, T.M. (2007). Cell biology, biochemistry, and molecular biology of articular cartilage in osteoarthritis. In Osteoarthritis. 4th ed., Moskowitz, R.W., Altman, R.D., Hochberg, M.C., Buckwalter, J.A., and Goldberg, V.M. ( eds.) pp. 73–106. Lippincott Williams and Wilkins, Philadelphia.
  • Witsch-Prehm, P., Miehlke, R., and Kresse, H. (1992). Presence of small proteoglycan fragments in normal and arthritic human cartilage. Arth. Rheum., 35(9), 1042–1052.
  • Cs-Szabo, G., Roughley, P.J., Plass, A.H.K., and Glant, T.T. (1995). Large and small proteoglycans of osteoarthritic and rheumatoid articular cartilage. Arth. Rheum., 38, 660–668.
  • Robinson, P.S., Huang, T.-F., Kazam, E., Iozzo, R.V., Birk, D.E., and Soslowsky, L.J. (2005). Influence of decorin and biglycan on mechanical properties of multiple tendons in knockout mice. J. Biomech. Engr., 127, 181–185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.