229
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Hyperbaric oxygen-stimulated proliferation and growth of osteoblasts may be mediated through the FGF-2/MEK/ERK 1/2/NF-κB and PKC/JNK pathways

, &
Pages 497-509 | Received 02 Dec 2009, Accepted 01 Mar 2010, Published online: 24 May 2010

REFERENCES

  • Karamitros, A.E., Kalentzos, V.N., and Soucacos, P.N. (2006). Electric stimulation and hyperbaric oxygen therapy in the treatment of nonunions. Injury 37(Suppl. 1):S63–S73.
  • Griffin, X.L., Warner, F., and Costa, M. (2008). The role of electromagnetic stimulation in the management of established non-union of long bone fractures: What is the evidence? Injury 39:419–429.
  • Bennett, M.H., Stanford, R., and Turner, R. (2009). Hyperbaric oxygen therapy for promoting fracture healing and treating fracture non-union. Cochrane Database Syst. Rev. 4: CD004712.
  • Grundnes, O., and Reikeras, O. (1992). Closed versus open medullary nailing of femoral fractures. Blood flow and healing studied in rats. Acta. Orthop. Scand. 63:492–496.
  • Gordillo, G.M., and Sen, C.K. (2003). Revisiting the essential role of oxygen in wound healing. Am. J. Surg. 186:259–263.
  • Knighton, D.R., Hunt, T.K., Scheuenstuhl, H., Halliday, B.J., Werb, Z., and Banda, M.J. (1983). Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 221:1283–1285.
  • Bilic, I., Petri, N.M., Bezic, J., Alfirevic, D., Modun, D., Capkun, V., and Bota, B. (2005). Effects of hyperbaric oxygen therapy on experimental burn wound healing in rats: A randomized controlled study. Undersea Hyperb. Med. 32:1–9.
  • Wang, J., Li, F., Calhoun, J.H., and Mader, J.T. (2002). The role and effectiveness of adjunctive hyperbaric oxygen therapy in the management of musculoskeletal disorders. J. Postgrad. Med. 48:226–231.
  • Wang, X., Ding, I., Xie, H., Wu, T., Wersto, N., Huang, K., and Okunieff, P. (1998). Hyperbaric oxygen and basic fibroblast growth factor promote growth of irradiated bone. Int. J. Radiat. Oncol. Biol. Phys. 40:189–196.
  • Muhonen, A., Haaparanta, M., Gronroos, T., Bergman, J., Knuuti, J., Hinkka, S., and Happonen, R.P. (2004). Osteoblastic activity and neoangiogenesis in distracted bone of irradiated rabbit mandible with or without hyperbaric oxygen treatment. Int. J. Oral. Maxillofac. Surg. 33:173–178.
  • Coulson, D.B., Ferguson, A.B., Jr., and Diehl, R.C., Jr. (1966). Effect of hyperbaric oxygen on the healing femur of the rat. Surg. Forum 17:449–450.
  • Niinikoski, J., Penttinen, R., and Kulonen, E. (1970). Effect of hyperbaric oxygenation on fracture healing in the rat: A biochemical study. Calcif. Tissue Res. Suppl. 4:115–116.
  • Barth, E., Sullivan, T., and Berg, E. (1990). Animal model for evaluating bone repair with and without adjunctive hyperbaric oxygen therapy (HBO): Comparing dose schedules. J. Invest. Surg. 3:387–392.
  • Dahlin, C., Linde, A., and Rockert, H. (1993). Stimulation of early bone formation by the combination of an osteopromotive membrane technique and hyperbaric oxygen. Scand. J. Plast. Reconstr. Surg. Hand Surg. 27:103–108.
  • Eralp, L., Ozkan, K., Kocaoglu, M., Aktas, S., Zihni, M., Turker, M., and Ozkan, F.U. (2007). Effects of hyperbaric oxygen therapy on distraction osteogenesis. Adv. Ther. 24:326–332.
  • Ueng, S.W., Lee, S.S., Lin, S.S., Wang, C.R., Liu, S.J., Yang, H.F., Tai, C.L., and Shih, C.H. (1998). Bone healing of tibial lengthening is enhanced by hyperbaric oxygen therapy: A study of bone mineral density and torsional strength on rabbits. J. Trauma 44:676–681.
  • Makihara, N., Hasegawa, Y., Sakano, S., Matsuda, T., Kataoka, Y., Iwata, H., and Takahashi, H. (1996). Effect of hyperbaric oxygenation on bone in HEBP-induced rachitic rats. Undersea Hyperb. Med. 23:1–4.
  • Jan, A., Sandor, G.K., Brkovic, B.B., Peel, S., Evans, A.W., and Clokie, C.M. (2009). Effect of hyperbaric oxygen on grafted and nongrafted calvarial critical-sized defects. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 107:157–163.
  • Salgado, C.J., Raju, A., Licata, L., Patel, M., Rojavin, Y., Wasielewski, S., Diarra, C., Gordon, A., Norcross, A., and Kent, K.A. (2009). Effects of hyperbaric oxygen therapy on an accelerated rate of mandibular distraction osteogenesis. J. Plast. Reconstr. Aesthet. Surg. 62:1568–1572.
  • Levin, D., Norman, D., Zinman, C., Rubinstein, L., Sabo, E., Misselevich, I., Reis, D., and Boss, J.H. (1999). Treatment of experimental avascular necrosis of the femoral head with hyperbaric oxygen in rats: Histological evaluation of the femoral heads during the early phase of the reparative process. Exp. Mol. Pathol. 67:99–108.
  • Franceschi, R.T., and Xiao, G. (2003). Regulation of the osteoblast-specific transcription factor, Runx2: Responsiveness to multiple signal transduction pathways. J. Cell. Biochem. 88:446–454.
  • Karaplis, A.C., and Goltzman, D. (2000). PTH and PTHrP effects on the skeleton. Rev. Endocr. Metab. Disord. 1:331–341.
  • Frazier, D.P., Wilson, A., Dougherty, C.J., Li, H., Bishopric, N.H., and Webster, K.A. (2007). PKC-alpha and TAK-1 are intermediates in the activation of c-Jun NH2-terminal kinase by hypoxia-reoxygenation. Am. J. Physiol. Heart Circ. Physiol. 292:H1675–H1684.
  • Linkhart, T.A., Mohan, S., and Baylink, D.J. (1996). Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 19:1S–12S.
  • Fok, T.C., Jan, A., Peel, S.A., Evans, A.W., Clokie, C.M., and Sandor, G.K. (2008). Hyperbaric oxygen results in increased vascular endothelial growth factor (VEGF) protein expression in rabbit calvarial critical-sized defects. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 105:417–422.
  • Kang, T.S., Gorti, G.K., Quan, S.Y., Ho, M., and Koch, R.J. (2004). Effect of hyperbaric oxygen on the growth factor profile of fibroblasts. Arch. Facial Plast. Surg. 6:31–35.
  • Wong, A.K., Schonmeyr, B.H., Soares, M.A., Li, S., and Mehrara, B.J. (2008). Hyperbaric oxygen inhibits growth but not differentiation of normal and irradiated osteoblasts. J. Craniofac. Surg. 19:757–765.
  • Wu, D., Malda, J., Crawford, R., and Xiao, Y. (2007). Effects of hyperbaric oxygen on proliferation and differentiation of osteoblasts from human alveolar bone. Connect. Tissue Res. 48:206–213.
  • Xiong, W., Pestell, R.G., Watanabe, G., Li, J., Rosner, M.R., and Hershenson, M.B. (1997). Cyclin D1 is required for S phase traversal in bovine tracheal myocytes. Am. J. Physiol. 272:L1205–L1210.
  • Nichols, J.T., Toto, P.D., and Choukas, N.C. (1968). The proliferative capacity and DNA synthesis of osteoblasts during fracture repair in normal and hypophysectomized rats. Oral Surg. Oral Med. Oral Pathol. 25:418–426.
  • Tuncay, O.C., Ho, D., and Barker, M.K. (1994). Oxygen tension regulates osteoblast function. Am. J. Orthod. Dentofacial Orthop. 105:457–463.
  • Dennog, C., Hartmann, A., Frey, G., and Speit, G. (1996). Detection of DNA damage after hyperbaric oxygen (HBO) therapy. Mutagenesis 11:605–609.
  • Arnett, T.R., Gibbons, D.C., Utting, J.C., Orriss, I.R., Hoebertz, A., Rosendaal, M., and Meghji, S. (2003). Hypoxia is a major stimulator of osteoclast formation and bone resorption. J. Cell. Physiol. 196:2–8.
  • Yamasaki, N., Tsuboi, H., Hirao, M., Nampei, A., Yoshikawa, H., and Hashimoto, J. (2009). High oxygen tension prolongs the survival of osteoclast precursors via macrophage colony-stimulating factor. Bone 44:71–79.
  • Bolander, M.E. (1992) Regulation of fracture repair by growth factors. Proc. Soc. Exp. Biol. Med. 200:165–170.
  • Globus, R.K., Patterson-Buckendahl, P., and Gospodarowicz, D. (1988). Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor beta. Endocrinology 123:98–105.
  • Noda, M., and Vogel, R. (1989). Fibroblast growth factor enhances type beta 1 transforming growth factor gene expression in osteoblast-like cells. J. Cell Biol. 109:2529–2535.
  • Bayati, S., Russell, R.C., and Roth, A.C. (1998). Stimulation of angiogenesis to improve the viability of prefabricated flaps. Plast. Reconstr. Surg. 101:1290–1295.
  • Saadeh, P.B., Mehrara, B.J., Steinbrech, D.S., Spector, J.A., Greenwald, J.A., Chin, G.S., Ueno, H., Gittes, G.K., and Longaker, M.T. (2000). Mechanisms of fibroblast growth factor-2 modulation of vascular endothelial growth factor expression by osteoblastic cells. Endocrinology 141:2075–2083.
  • Collin-Osdoby, P. (1994). Role of vascular endothelial cells in bone biology. J. Cell. Biochem. 55:304–309.
  • Wang, D.S., Miura, M., Demura, H., and Sato, K. (1997). Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells. Endocrinology 138:2953–2962.
  • Hipskind, R.A., and Bilbe, G. (1998). MAP kinase signaling cascades and gene expression in osteoblasts. Front. Biosci. 3:d804–d816.
  • Huang, Z., Cheng, S.L., and Slatopolsky, E. (2001). Sustained activation of the extracellular signal-regulated kinase pathway is required for extracellular calcium stimulation of human osteoblast proliferation. J. Biol. Chem. 276:21351–21358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.