323
Views
42
CrossRef citations to date
0
Altmetric
Research Article

Adipose-derived stem cells and BMP2: Part 1. BMP2-treated adipose-derived stem cells do not improve repair of segmental femoral defects

, , , &
Pages 109-118 | Received 25 Nov 2009, Accepted 01 Mar 2010, Published online: 11 Aug 2010

REFERENCES

  • Reddi, A.H. (2000). Morphogenesis and tissue engineering of bone and cartilage: Inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng. 6:351–359.
  • Orban, J.M., Marra, K.G., and Hollinger, J.O. (2002). Composition options for tissue-engineered bone. Tissue Eng. 8:529–539.
  • Caplan, A.I., and Bruder, S.P. (2001). Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century. Trends Mol. Med. 7:259–264.
  • Halvorsen, Y.C., Wilkison, W.O., and Gimble, J.M. (2000). Adipose-derived stromal cells – their utility and potential in bone formation. Int. J. Obes. Relat. Metab. Disord. 24(Suppl 4):S41–S44.
  • Hattori, H., Sato, M., Masuoka, K., Ishihara, M., Kikuchi, T., Matsui, T., Takase, B., Ishizuka, T., Kikuchi, M., Fujikawa, K., and Ishihara, M. (2004). Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs. 178:2–12.
  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science. 284:143–147.
  • Zuk, P.A., Zhu, M., Mizuno, H., Huang, J.I., Futrell, W.J., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H. (2001). Multi-lineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7:211–226.
  • Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., and Hedrick, M.H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13:4279–4295.
  • Hicok, K.C., Du Laney, T.V., Zhou, Y.S., Halvorsen, Y.D., Hitt, D.C., Cooper, L.F., and Gimble, J.M. (2004). Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 10:371–380.
  • Cowan, C.M., Shi, Y.Y., Aalami, O.O., Chou, Y.F., Mari, C., Thomas, R., Quarto, N., Contag, C.H., Wu, B., and Longaker, M.T. (2004). Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 22:560–567.
  • Conejero, J.A., Lee, J.A., Parrett, B.M., Terry, M., Wear-Maggitti, K., Grant, R.T., and Breitbart, A.S. (2006). Repair of palatal bone defects using osteogenically differentiated fat-derived stem cells. Plast. Reconstr. Surg. 117:857–863.
  • Cui, L., Liu, B., Liu, G., Zhang, W., Cen, L., Sun, J., Yin, S., Liu, W., and Cao, Y. (2007). Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials. 28:5477–5486.
  • Lendeckel, S., Jodicke, A., Christophis, P., Heidinger, K., Wolff, J., Fraser, J.K., Hedrick, M.H., Berthold, L., and Howaldt, H.P. (2004). Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: Case report. J. Craniomaxillofac. Surg. 32:370–373.
  • Mesimaki, K., Lindroos, B., Tornwall, J., Mauno, J., Lindqvist, C., Kontio, R., Miettinen, S., and Suuronen, R. (2009). Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int. J. Oral Maxillofac. Surg. 38:201–209.
  • Tsuchida, H., Hashimoto, J., Crawford, E., Manske, P., and Lou, J. (2003). Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J. Orthop. Res. 21:44–53.
  • Shen, H.C., Peng, H., Usas, A., Gearhart, B., Fu, F.H., and Huard, J. (2004). Structural and functional healing of critical-size segmental bone defects by transduced muscle-derived cells expressing BMP4. J. Gene Med. 6:984–991.
  • Peterson, B., Zhang, J., Iglesias, R., Kabo, M., Hedrick, M., Benhaim, P., and Lieberman, J.R. (2005). Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng. 11:120–129.
  • Lieberman, J.R., Daluiski, A., Stevenson, S., Wu, L., McAllister, P., Lee, Y.P., Kabo, J.M., Finerman, G.A., Berk, A.J., and Witte, O.N. (1999). The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J. Bone Joint Surg. Am. 81:905–917.
  • Anderson, W.F. (1998). Human gene therapy. Nature. 392:25–30.
  • Kimmelman, J. (2005). Recent developments in gene transfer: Risk and ethics. BMJ. 330:79–82.
  • Dragoo, J.L., Choi, J.Y., Lieberman, J.R., Huang, J., Zuk, P.A., Zhang, J., Hedrick, M.H., and Benhaim, P. (2003). Bone induction by BMP-2 transduced stem cells derived from human fat. J. Orthop. Res. 21:622–629.
  • Dudas, J.R., Marra, K.G., Cooper, G.M., Penascino, V.M., Mooney, M.P., Jiang, S., Rubin, J.P., and Losee, J.E. (2006). The osteogenic potential of adipose-derived stem cells for the repair of rabbit calvarial defects. Ann. Plast. Surg. 56:543–548.
  • Lin, Y., Tang, W., Wu, L., Jing, W., Li, X., Wu, Y., Liu, L., Long, J., and Tian, W. (2008). Bone regeneration by BMP-2 enhanced adipose stem cells loading on alginate gel. Histochem. Cell Biol. 129:203–210.
  • Jeon, O., Rhie, J.W., Kwon, I.K., Kim, J.H., Kim, B.S., and Lee, S.H. (2008). In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically. Tissue Eng. Part A. 14: 1285–1294.
  • Chou, Y.F., Chiou, W.A., Xu, Y., Dunn, J.C., and Wu, B.M. (2004). The effect of pH on the structural evolution of accelerated biomimetic apatite. Biomaterials. 25: 5323–5331.
  • Chou, Y.F., Dunn, J.C., and Wu, B.M. (2005). In vitro response of MC3T3-E1 preosteoblasts within three-dimensional apatite-coated PLGA scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 75:81–90.
  • Yoon, E., Dhar, S., Chun, D.E., Gharibjanian, N.A., and Evans, G.R. (2007). In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Tissue Eng. 13:619–627.
  • Dragoo, J.L., Lieberman, J.R., Lee, R.S., Deugarte, D.A., Lee, Y., Zuk, P.A., Hedrick, M.H., and Benhaim, P. (2005). Tissue-engineered bone from BMP-2-transduced stem cells derived from human fat. Plast. Reconstr. Surg. 115:1665–1673.
  • Barrere, F., van Blitterswijk, C.A., de Groot, K., and Layrolle, P. (2002). Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution. Biomaterials. 23:1921–1930.
  • Puissant, B., Barreau, C., Bourin, P., Clavel, C., Corre, J., Bousquet, C., Taureau, C., Cousin, B., Abbal, M., Laharrague, P., Penicaud, L., Casteilla, L., and Blancher, A. (2005). Immunomodulatory effect of human adipose tissue-derived adult stem cells: Comparison with bone marrow mesenchymal stem cells. Br. J. Haematol. 129:118–129.
  • Isobe, M., Yamazaki, Y., Mori, M., Ishihara, K., Nakabayashi, N., and Amagasa, T. (1999). The role of recombinant human bone morphogenetic protein-2 in PLGA capsules at an extraskeletal site of the rat. J. Biomed. Mater. Res. 45:36–41.
  • Yasko, A.W., Lane, J.M., Fellinger, E.J., Rosen, V., Wozney, J.M., and Wang, E.A. (1992). The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). A radiographic, histological, and biomechanical study in rats. J. Bone Joint Surg. Am. 74:659–670.
  • Yamagiwa, H., Endo, N., Tokunaga, K., Hayami, T., Hatano, H., and Takahashi, H.E. (2001). In vivo bone-forming capacity of human bone marrow-derived stromal cells is stimulated by recombinant human bone morphogenetic protein-2. J. Bone Miner. Metab. 19:20–28.
  • Wang, E.A., Rosen, V., D'Alessandro, J.S., Bauduy, M., Cordes, P., Harada, T., Israel, D.I., Hewick, R.M., Kerns, K.M., LaPan, P., Luxenberg, D.P., McQuiad, D., Moutsatso, I.K., Nove, J., and Wozney, J.M. (1990). Recombinant human bone morphogenetic protein induces bone formation. Proc. Natl. Acad. Sci. U.S.A. 87:2220–2224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.