1,522
Views
69
CrossRef citations to date
0
Altmetric
Review

Fibroproliferative Disorders and Their Mechanobiology

&
Pages 187-196 | Received 04 May 2011, Accepted 31 Oct 2011, Published online: 13 Feb 2012

REFERENCES

  • Hertz, M.I., Henke, C.A., Nakhleh, R.E., Harmon, K.R., Marinelli, W.A., Fox, J.M., Kubo, S.H., Shumway, S.J., Bolman, R.M., III, and Bitterman, P.B. (1992). Obliterative bronchiolitis after lung transplantation: A fibroproliferative disorder associated with platelet-derived growth factor. Proc. Natl. Acad. Sci. U.S.A. 89:10385–10389.
  • Wynn, T.A. (2008). Cellular and molecular mechanisms of fibrosis. J. Pathol. 214:199–210.
  • Ingber, D.E. (2008). Tensegrity-based mechanosensing from macro to micro. Prog. Biophys. Mol. Biol. 97:163–179.
  • Ingber, D.E. (2003). Mechanobiology and diseases of mechanotransduction. Ann. Med. 35:564–577.
  • Pozzi, A., Wary, K.K., Giancotti, F.G., and Gardner, H.A. (1998). Integrin alpha1beta1 mediates a unique collagen-dependent proliferation pathway in vivo. J. Cell Biol. 142:587–594.
  • Schiro, J.A., Chan, B.M., Roswit, W.T., Kassner, P.D., Pentland, A.P., Hemler, M.E., Eisen, A.Z., and Kupper, T.S. (1991). Integrin alpha 2 beta 1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells. Cell 67:403–410.
  • Carracedo, S., Lu, N., Popova, S.N., Jonsson, R., Eckes, B., and Gullberg, D. (2010). The fibroblast integrin alpha11beta1 is induced in a mechanosensitive manner involving activin A and regulates myofibroblast differentiation. J. Biol. Chem. 285:10434–10445.
  • Klein, C.E., Dressel, D., Steinmayer, T., Mauch, C., Eckes, B., Krieg, T., Bankert, R.B., and Weber, L. (1991). Integrin alpha 2 beta 1 is upregulated in fibroblasts and highly aggressive melanoma cells in three-dimensional collagen lattices and mediates the reorganization of collagen I fibrils. J. Cell Biol. 115:1427–1436.
  • Noszczyk, B.H., Klein, E., Holtkoetter, O., Krieg, T., and Majewski, S. (2002). Integrin expression in the dermis during scar formation in humans. Exp. Dermatol. 11:311–318.
  • Langholz, O., Röckel, D., Mauch, C., Kozlowska, E., Bank, I., Krieg, T., and Eckes, B. (1995). Collagen and collagenase gene expression in three-dimensional collagen lattices are differentially regulated by alpha 1 beta 1 and alpha 2 beta 1 integrins. J. Cell Biol. 131:1903–1915.
  • Khalsa, P.S., Ge, W., Uddin, M.Z., and Hadjiargyrou, M. (2004). Integrin alpha2beta1 affects mechano-transduction in slowly and rapidly adapting cutaneous mechanoreceptors in rat hairy skin. Neuroscience 129:447–459.
  • Ng, C.P., Hinz, B., and Swartz, M.A. (2005). Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell. Sci. 118:4731–4739.
  • Chen, X., Moeckel, G., Morrow, J.D., Cosgrove, D., Harris, R.C., Fogo, A.B., Zent, R., and Pozzi, A. (2004). Lack of integrin alpha1beta1 leads to severe glomerulosclerosis after glomerular injury. Am. J. Pathol. 165:617–630.
  • Zhou, Y., Hagood, J.S., Lu, B., Merryman, W.D., and Murphy-Ullrich, J.E. (2010). Thy-1-integrin alphav beta5 interactions inhibit lung fibroblast contraction-induced latent transforming growth factor-beta1 activation and myofibroblast differentiation. J. Biol. Chem. 285:22382–22393.
  • Aszódi, A., Legate, K.R., Nakchbandi, I., and Fässler, R. (2006). What mouse mutants teach us about extracellular matrix function. Annu. Rev. Cell Dev. Biol. 22:591–621.
  • Ingber, D.E. (1997). Tensegrity: The architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59:575–599.
  • Ingber, D.E. (2003). Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 116:1397–1408.
  • Wang, N., Tytell, J.D., and Ingber, D.E. (2009). Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10:75–82.
  • Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M., Boettiger, D., Hammer, D.A., and Weaver, V.M. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254.
  • Harris, A.K., Stopak, D., and Wild, P. (1981). Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249–251.
  • Butcher, D.T., Alliston, T., and Weaver, V.M. (2009). A tense situation: Forcing tumour progression. Nat. Rev. Cancer 9:108–122.
  • Katsumi, A., Naoe, T., Matsushita, T., Kaibuchi, K., and Schwartz, M.A. (2005). Integrin activation and matrix binding mediate cellular responses to mechanical stretch. J. Biol. Chem. 280:16546–16549.
  • Giancotti, F.G., and Ruoslahti, E. (1999). Integrin signaling. Science 285:1028–1032.
  • Arora, P.D., Narani, N., and McCulloch, C.A. (1999). The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am. J. Pathol. 154:871–882.
  • Liu, Y. (2010). New insights into epithelial-mesenchymal transition in kidney fibrosis. J. Am. Soc. Nephrol. 21:212–222.
  • Selman, M., and Pardo, A. (2002). Idiopathic pulmonary fibrosis: An epithelial/fibroblastic cross-talk disorder. Respir. Res. 3:3.
  • Ghahary, A., and Ghaffari, A. (2007). Role of keratinocyte-fibroblast cross-talk in development of hypertrophic scar. Wound Repair Regen. 15:S46–S53.
  • Quaglino, D., Jr, Nanney, L.B., Ditesheim, J.A., and Davidson, J.M. (1991). Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin: Incisional wound model. J. Invest. Dermatol. 97:34–42.
  • Massagué, J., Attisano, L., and Wrana, J.L. (1994). The TGF-beta family and its composite receptors. Trends Cell Biol. 4:172–178.
  • Massagué, J., and Wotton, D. (2000). Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 19:1745–1754.
  • Goumans, M.J., and Mummery, C. (2000). Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int. J. Dev. Biol. 44:253–265.
  • Tsukazaki, T., Chiang, T.A., Davison, A.F., Attisano, L., and Wrana, J.L. (1998). SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95:779–791.
  • Wipff, P.J., Rifkin, D.B., Meister, J.J., and Hinz, B. (2007). Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179:1311–1323.
  • El Chaar, M., Attia, E., Chen, J., Hannafin, J., Poppas, D.P., and Felsen, D. (2005). Cyclooxygenase-2 inhibitor decreases extracellular matrix synthesis in stretched renal fibroblasts. Nephron. Exp. Nephrol. 100:e150–e155.
  • Skutek, M., van Griensven, M., Zeichen, J., Brauer, N., and Bosch, U. (2001). Cyclic mechanical stretching modulates secretion pattern of growth factors in human tendon fibroblasts. Eur. J. Appl. Physiol. 86:48–52.
  • Yasuda, T., Kondo, S., Homma, T., and Harris, R.C. (1996). Regulation of extracellular matrix by mechanical stress in rat glomerular mesangial cells. J. Clin. Invest. 98:1991–2000.
  • Wang, Z., Fong, K.D., Phan, T.T., Lim, I.J., Longaker, M.T., and Yang, G.P. (2006). Increased transcriptional response to mechanical strain in keloid fibroblasts due to increased focal adhesion complex formation. J. Cell. Physiol. 206:510–517.
  • Lu, F., Ogawa, R., Nguyen, D.T., Chen, B., Guo, D., Helm, D.L., Zhan, Q., Murphy, G.F., and Orgill, D.P. (2011). Microdeformation of three-dimensional cultured fibroblasts induces gene expression and morphological changes. Ann. Plast. Surg. 66:296–300.
  • Zhang, M., Zhang, Z., Pan, H.Y., Wang, D.X., Deng, Z.T., and Ye, X.L. (2009). TGF-beta1 induces human bronchial epithelial cell-to-mesenchymal transition in vitro. Lung 187:187–194.
  • Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C.H., and Moustakas, A. (2005). TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol. Biol. Cell 16:1987–2002.
  • Bhowmick, N.A., Ghiassi, M., Bakin, A., Aakre, M., Lundquist, C.A., Engel, M.E., Arteaga, C.L., and Moses, H.L. (2001). Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell 12(1):27–36.
  • Grotendorst, G.R. (1997). Connective tissue growth factor: A mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 8:171–179.
  • Guo, F., Carter, D.E., and Leask, A. (2011). Mechanical tension increases CCN2/CTGF expression and proliferation in gingival fibroblasts via a TGFβ-dependent mechanism. PLoS One 6:e19756.
  • Mori, T., Kawara, S., Shinozaki, M., Hayashi, N., Kakinuma, T., Igarashi, A., Takigawa, M., Nakanishi, T., and Takehara, K. (1999). Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. J. Cell. Physiol. 181:153–159.
  • Letamendia, A., Labbé, E., and Attisano, L. (2001). Transcriptional regulation by Smads: Crosstalk between the TGF-beta and Wnt pathways. J. Bone Joint Surg. Am. 83:S31–S39.
  • Sato, M. (2006). Upregulation of the Wnt/beta-catenin pathway induced by transforming growth factor-beta in hypertrophic scars and keloids. Acta Derm. Venereol. 86:300–307.
  • Derynck, R., and Zhang, Y.E. (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584.
  • Brown, R.A., Sethi, K.K., Gwanmesia, I., Raemdonck, D., Eastwood, M., and Mudera, V. (2002). Enhanced fibroblast contraction of 3D collagen lattices and integrin expression by TGF-beta1 and -beta3: Mechanoregulatory growth factors? Exp. Cell Res. 274:310–322.
  • Chang, L., and Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature 410:37–40.
  • Hatton, J.P., Pooran, M., Li, C.F., Luzzio, C., and Hughes-Fulford, M. (2003). A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway. J. Bone Miner. Res. 18:58–66.
  • Li, S., Kim, M., Hu, Y.L., Jalali, S., Schlaepfer, D.D., Hunter, T., Chien, S., and Shyy, J.Y. (1997). Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J. Biol. Chem. 272:30455–30462.
  • Azuma, N., Akasaka, N., Kito, H., Ikeda, M., Gahtan, V., Sasajima, T., and Sumpio, B.E. (2001). Role of p38 MAP kinase in endothelial cell alignment induced by fluid shear stress. Am. J. Physiol. Heart Circ. Physiol. 280:H189–H197.
  • Kito, H., Chen, E.L., Wang, X., Ikeda, M., Azuma, N., Nakajima, N., Gahtan, V., and Sumpio, B.E. (2000). Role of mitogen-activated protein kinases in pulmonary endothelial cells exposed to cyclic strain. J. Appl. Physiol. 89:2391–2400.
  • Wang, J.G., Miyazu, M., Xiang, P., Li, S.N., Sokabe, M., and Naruse, K. (2005). Stretch-induced cell proliferation is mediated by FAK-MAPK pathway. Life Sci. 76:2817–2825.
  • Hsu, H.J., Lee, C.F., Locke, A., Vanderzyl, S.Q., and Kaunas, R. (2010). Stretch-induced stress fiber remodeling and the activations of JNK and ERK depend on mechanical strain rate, but not FAK. PLoS One 5:e12470.
  • Boudreault, F., and Tschumperlin, D.J. (2010). Stretch-induced mitogen-activated protein kinase activation in lung fibroblasts is independent of receptor tyrosine kinases. Am. J. Respir. Cell Mol. Biol. 43:64–73.
  • Nishimura, K., Blume, P., Ohgi, S., and Sumpio, B.E. (2007). Effect of different frequencies of tensile strain on human dermal fibroblast proliferation and survival. Wound Repair Regen. 15:646–656.
  • Fanning, P.J., Emkey, G., Smith, R.J., Grodzinsky, A.J., Szasz, N., and Trippel, S.B. (2003). Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. J. Biol. Chem. 278:50940–50948.
  • Goldsmith, Z.G., and Dhanasekaran, D.N. (2007). G protein regulation of MAPK networks. Oncogene 26:3122–3142.
  • Schmitt, J.M., and Stork, P.J. (2001). Cyclic AMP-mediated inhibition of cell growth requires the small G protein Rap1. Mol. Cell. Biol. 21:3671–3683.
  • Crespo, P., Xu, N., Simonds, W.F., and Gutkind, J.S. (1994). Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature 369:418–420.
  • Ueda, Y., Hirai, S., Osada, S., Suzuki, A., Mizuno, K., and Ohno, S. (1996). Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J. Biol. Chem. 271:23512–23519.
  • Minamino, T., Yujiri, T., Terada, N., Taffet, G.E., Michael, L.H., Johnson, G.L., and Schneider, M.D. (2002). MEKK1 is essential for cardiac hypertrophy and dysfunction induced by Gq. Proc. Natl. Acad. Sci. U.S.A. 99:3866–3871.
  • Lim, I.J., Phan, T.T., Tan, E.K., Nguyen, T.T., Tran, E., Longaker, M.T., Song, C., Lee, S.T., and Huynh, H.T. (2003). Synchronous activation of ERK and phosphatidylinositol 3-kinase pathways is required for collagen and extracellular matrix production in keloids. J. Biol. Chem. 278:40851–40858.
  • Ridley, A.J., and Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399.
  • Leung, T., Chen, X.Q., Manser, E., and Lim, L. (1996). The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 16:5313–5327.
  • Lin, T., Zeng, L., Liu, Y., DeFea, K., Schwartz, M.A., Chien, S., and Shyy, J.Y. (2003). Rho-ROCK-LIMK-cofilin pathway regulates shear stress activation of sterol regulatory element binding proteins. Circ. Res. 92:1296–1304.
  • Wong, C.C., Wong, C.M., Ko, F.C., Chan, L.K., Ching, Y.P., Yam, J.W., and Ng, I.O. (2008). Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma. PLoS One 3:e2779.
  • Fukushima, M., Nakamuta, M., Kohjima, M., Kotoh, K., Enjoji, M., Kobayashi, N., and Nawata, H. (2005). Fasudil hydrochloride hydrate, a Rho-kinase (ROCK) inhibitor, suppresses collagen production and enhances collagenase activity in hepatic stellate cells. Liver Int. 25:829–838.
  • Tada, S., Iwamoto, H., Nakamuta, M., Sugimoto, R., Enjoji, M., Nakashima, Y., and Nawata, H. (2001). A selective ROCK inhibitor, Y27632, prevents dimethylnitrosamine-induced hepatic fibrosis in rats. J. Hepatol. 34:529–536.
  • Nagatoya, K., Moriyama, T., Kawada, N., Takeji, M., Oseto, S., Murozono, T., Ando, A., Imai, E., and Hori, M. (2002). Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int. 61:1684–1695.
  • Satoh, S., Yamaguchi, T., Hitomi, A., Sato, N., Shiraiwa, K., Ikegaki, I., Asano, T., and Shimokawa, H. (2002). Fasudil attenuates interstitial fibrosis in rat kidneys with unilateral ureteral obstruction. Eur. J. Pharmacol. 455:169–174.
  • Masszi, A., Di Ciano, C., Sirokmány, G., Arthur, W.T., Rotstein, O.D., Wang, J., McCulloch, C.A., Rosivall, L., Mucsi, I., and Kapus, A. (2003). Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition. Am. J. Physiol. Renal Physiol. 284:F911–F924.
  • Das, S., Becker, B.N., Hoffmann, F.M., and Mertz, J.E. (2009). Complete reversal of epithelial to mesenchymal transition requires inhibition of both ZEB expression and the Rho pathway. BMC Cell Biol. 10:94.
  • Zhao, X.H., Laschinger, C., Arora, P., Szászi, K., Kapus, A., and McCulloch, C.A. (2007). Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J. Cell Sci. 120:1801–1809.
  • Mercher, T., Coniat, M.B., Monni, R., Mauchauffe, M., Nguyen Khac, F., Gressin, L., Mugneret, F., Leblanc, T., Dastugue, N., Berger, R., and Bernard, O.A. (2001). Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proc. Natl. Acad. Sci. U.S.A. 98:5776–5779.
  • Wang, D.Z., Li, S., Hockemeyer, D., Sutherland, L., Wang, Z., Schratt, G., Richardson, J.A., Nordheim, A., and Olson, E.N. (2002). Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc. Natl. Acad. Sci. U.S.A. 99:14855–14860.
  • Ma, Z., Morris, S.W., Valentine, V., Li, M., Herbrick, J.A., Cui, X., Bouman, D., Li, Y., Mehta, P.K., Nizetic, D., Kaneko, Y., Chan, G.C., Chan, L.C., Squire, J., Scherer, S.W., and Hitzler, J.K. (2001). Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat. Genet. 28:220–221.
  • Sasazuki, T., Sawada, T., Sakon, S., Kitamura, T., Kishi, T., Okazaki, T., Katano, M., Tanaka, M., Watanabe, M., Yagita, H., Okumura, K., and Nakano, H. (2002). Identification of a novel transcriptional activator, BSAC, by a functional cloning to inhibit tumor necrosis factor-induced cell death. J. Biol. Chem. 277:28853–28860.
  • Miralles, F., Posern, G., Zaromytidou, A.I., and Treisman, R. (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342.
  • Lutz, R., Sakai, T., and Chiquet, M. (2010). Pericellular fibronectin is required for RhoA-dependent responses to cyclic strain in fibroblasts. J. Cell Sci. 123:1511–1521.
  • Chiquet, M., Sarasa-Renedo, A., and Tunç-Civelek, V. (2004). Induction of tenascin-C by cyclic tensile strain versus growth factors: Distinct contributions by Rho/ROCK and MAPK signaling pathways. Biochim. Biophys. Acta 1693:193–204.
  • Haydont, V., Bourgier, C., and Vozenin-Brotons, M.C. (2007). Rho/ROCK pathway as a molecular target for modulation of intestinal radiation-induced toxicity. Br. J. Radiol. 80:S32–S40.
  • Bourgier, C., Haydont, V., Milliat, F., François, A., Holler, V., Lasser, P., Bourhis, J., Mathé, D., and Vozenin-Brotons, M.C. (2005). Inhibition of Rho kinase modulates radiation induced fibrogenic phenotype in intestinal smooth muscle cells through alteration of the cytoskeleton and connective tissue growth factor expression. Gut 54:336–343.
  • Sarasa-Renedo, A., Tunç-Civelek, V., and Chiquet, M. (2006). Role of RhoA/ROCK-dependent actin contractility in the induction of tenascin-C by cyclic tensile strain. Exp. Cell Res. 312:1361–1370.
  • Baud, V., and Karin, M. (2001). Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 11:372–377.
  • Tartaglia, L.A., and Goeddel, D.V. (1992). Two TNF receptors. Immunol. Today 13:151–153.
  • Renò, F., Sabbatini, M., Lombardi, F., Stella, M., Pezzuto, C., Magliacani, G., and Cannas, M. (2003). In vitro mechanical compression induces apoptosis and regulates cytokines release in hypertrophic scars. Wound Repair Regen. 11:331–336.
  • Inoh, H., Ishiguro, N., Sawazaki, S., Amma, H., Miyazu, M., Iwata, H., Sokabe, M., and Naruse, K. (2002). Uni-axial cyclic stretch induces the activation of transcription factor nuclear factor kappaB in human fibroblast cells. FASEB J. 16:405–407.
  • Amma, H., Naruse, K., Ishiguro, N., and Sokabe, M. (2005). Involvement of reactive oxygen species in cyclic stretch-induced NF-kappaB activation in human fibroblast cells. Br. J. Pharmacol. 145:364–373.
  • Goldberg, M.T., Han, Y.P., Yan, C., Shaw, M.C., and Garner, W.L. (2007). TNF-alpha suppresses alpha-smooth muscle actin expression in human dermal fibroblasts: An implication for abnormal wound healing. J. Invest. Dermatol. 127(11):2645–2655.
  • Yamauchi, Y., Kohyama, T., Takizawa, H., Kamitani, S., Desaki, M., Takami, K., Kawasaki, S., Kato, J., and Nagase, T. (2010). Tumor necrosis factor-alpha enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-beta1. Exp. Lung Res. 36:12–24.
  • Yan, C., Grimm, W.A., Garner, W.L., Qin, L., Travis, T., Tan, N., and Han, Y.P. (2010). Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2. Am. J. Pathol. 176:2247–2258.
  • Bowley, E., O’Gorman, D.B., and Gan, B.S. (2007). Beta-catenin signaling in fibroproliferative disease. J. Surg. Res. 138:141–150.
  • Bhanot, P., Brink, M., Samos, C.H., Hsieh, J.C., Wang, Y., Macke, J.P., Andrew, D., Nathans, J., and Nusse, R. (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382:225–230.
  • Wehrli, M., Dougan, S.T., Caldwell, K., O’Keefe, L., Schwartz, S., Vaizel-Ohayon, D., Schejter, E., Tomlinson, A., and DiNardo, S. (2000). Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407:527–530.
  • Howard, J.C., Varallo, V.M., Ross, D.C., Roth, J.H., Faber, K.J., Alman, B., and Gan, B.S. (2003). Elevated levels of beta-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren’s disease cells are regulated by tension in vitro. BMC Musculoskelet. Disord. 4:16.
  • Lau, K.H., Kapur, S., Kesavan, C., and Baylink, D.J. (2006). Up-regulation of the Wnt, estrogen receptor, insulin-like growth factor-I, and bone morphogenetic protein pathways in C57BL/6J osteoblasts as opposed to C3H/HeJ osteoblasts in part contributes to the differential anabolic response to fluid shear. J. Biol. Chem. 281:9576–9588.
  • Heise, R.L., Stober, V., Cheluvaraju, C., Hollingsworth, J.W., and Garantziotis, S. (2011). Mechanical stretch induces epithelial-mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity. J. Biol. Chem. 286:17435–17444.
  • Riveline, D., Zamir, E., Balaban, N.Q., Schwarz, U.S., Ishizaki, T., Narumiya, S., Kam, Z., Geiger, B., and Bershadsky, A.D. (2001). Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153:1175–1186.
  • Mammoto, A., Huang, S., Moore, K., Oh, P., and Ingber, D.E. (2004). Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J. Biol. Chem. 279:26323–26330.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.