125
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Remodeling of the Dermal–Epidermal Junction in Bilayered Skin Constructs After Silencing the Expression of the p.R2622Q and p.G2623C Collagen VII Mutants

, &
Pages 379-389 | Received 04 Oct 2011, Accepted 15 Feb 2012, Published online: 10 Apr 2012

References

  • Burgeson, R.E., and Christiano, A.M. (1997). The dermal-epidermal junction. Curr. Opin. Cell Biol. 9:651–658.
  • Adachi, E., Hopkinson, I., and Hayashi, T. (1997). Basement-membrane stromal relationships: Interactions between collagen fibrils and the lamina densa. Int. Rev. Cytol. 173:73–156.
  • Aumailley, M., Battaglia, C., Mayer, U., Reinhardt, D., Nischt, R., Timpl, R., and Fox, J.W. (1993). Nidogen mediates the formation of ternary complexes of basement membrane components. Kidney Int. 43:7–12.
  • Aumailley, M., and Rousselle, P. (1999). Laminins of the dermo-epidermal junction. Matrix Biol. 18:19–28.
  • Fox, J.W., Mayer, U., Nischt, R., Aumailley, M., Reinhardt, D., Wiedemann, H., Mann, K., Timpl, R., Krieg, T., Engel, J. and Chu, M.L. (1991). Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J. 10:3137–3146.
  • Ghohestani, R.F., Li, K., Rousselle, P., and Uitto, J. (2001). Molecular organization of the cutaneous basement membrane zone. Clin. Dermatol. 19:551–562.
  • Keene, D.R., Sakai, L.Y., Lunstrum, G.P., Morris, N.P., and Burgeson, R.E. (1987). Type VII collagen forms an extended network of anchoring fibrils. J. Cell Biol. 104:611–621.
  • Sakai, L.Y., Keene, D.R., Morris, N.P., and Burgeson, R.E. (1986). Type VII collagen is a major structural component of anchoring fibrils. J. Cell Biol. 103:1577–1586.
  • Christiano, A.M., Greenspan, D.S., Lee, S., and Uitto, J. (1994). Cloning of human type VII collagen. Complete primary sequence of the alpha 1(VII) chain and identification of intragenic polymorphisms. J. Biol. Chem. 269:20256–20262.
  • McMillan, J.R., Akiyama, M., and Shimizu, H. (2003). Ultrastructural orientation of laminin 5 in the epidermal basement membrane: An updated model for basement membrane organization. J. Histochem. Cytochem. 51:1299–1306.
  • Shimizu, M., Minakuchi, K., Kaji, S., and Koga, J. (1997). Chondrocyte migration to fibronectin, type I collagen, and type II collagen. Cell Struct. Funct. 22:309–315.
  • Brittingham, R., Uitto, J., and Fertala, A. (2006). High-affinity binding of the NC1 domain of collagen VII to laminin 5 and collagen IV. Biochem. Biophys. Res. Commun. 343:692–699.
  • Briggaman, R.A., and Wheeler, Jr., C.E. (1975). Epidermolysis bullosa dystrophica-recessive: A possible role of anchoring fibrils in the pathogenesis. J. Invest. Dermatol. 65:203–211.
  • Pulkkinen, L., and Uitto, J. (1999). Mutation analysis and molecular genetics of epidermolysis bullosa. Matrix Biol. 18:29–42.
  • Uitto, J., and Pulkkinen, L. (2001). Molecular genetics of heritable blistering disorders. Arch. Dermatol. 137:1458–1461.
  • De Luca, M., Pellegrini, G., and Mavilio, F. (2009). Gene therapy of inherited skin adhesion disorders: A critical overview. Br. J. Dermatol. 161:19–24.
  • Pai, S., and Marinkovich, M.P. (2002). Epidermolysis bullosa: New and emerging trends. Am. J. Clin. Dermatol. 3:371–380.
  • Uitto, J., McGrath, J.A., Rodeck, U., Bruckner-Tuderman, L., and Robinson, E.C. (2010). Progress in epidermolysis bullosa research: Toward treatment and cure. J. Invest. Dermatol. 130:1778–1784.
  • Fine, J.D. (2010). Inherited epidermolysis bullosa: Past, present, and future. Ann. N. Y. Acad. Sci. 1194:213–222.
  • Brittingham, R., Colombo, M., Ito, H., Steplewski, A., Birk, D.E., Uitto, J., and Fertala, A. (2005). Single amino acid substitutions in procollagen VII affect early stages of assembly of anchoring fibrils. J. Biol. Chem. 280:191–198.
  • Chung, H.J., Steplewski, A., Uitto, J., and Fertala, A. (2009). Fluorescent protein markers to tag collagenous proteins: The paradigm of procollagen VII. Biochem. Biophys. Res. Commun. 390:662–666.
  • Colombo, M., Brittingham, R.J., Klement, J.F., Majsterek, I., Birk, D.E., Uitto, J., and Fertala, A. (2003). Procollagen VII self-assembly depends on site-specific interactions and is promoted by cleavage of the NC2 domain with procollagen C-proteinase. Biochemistry 42:11434–11442.
  • Hintze, V., Steplewski, A., Ito, H., Jensen, D.A., Rodeck, U., and Fertala, A. (2008). Cells expressing partially unfolded R789C/p.R989C type II procollagen mutant associated with spondyloepiphyseal dysplasia undergo apoptosis. Hum. Mutat. 29:841–851.
  • Heinonen, S., Mannikko, M., Klement, J.F., Whitaker-Menezes, D., Murphy, G.F., and Uitto, J. (1999). Targeted inactivation of the type VII collagen gene (Col7a1) in mice results in severe blistering phenotype: A model for recessive dystrophic epidermolysis bullosa. J. Cell. Sci. 112(Pt 21):3641–3648.
  • Maas-Szabowski, N., Szabowski, A., Stark, H.J., Andrecht, S., Kolbus, A., Schorpp-Kistner, M., Angel, P., and Fusenig, N.E. (2001). Organotypic cocultures with genetically modified mouse fibroblasts as a tool to dissect molecular mechanisms regulating keratinocyte growth and differentiation. J. Invest. Dermatol. 116:816–820.
  • Stark, H.J., Szabowski, A., Fusenig, N.E., and Maas-Szabowski, N. (2004). Organotypic cocultures as skin equivalents: A complex and sophisticated in vitro system. Biol. Proc. Online 6:55–60.
  • Smola, H., Stark, H.J., Thiekotter, G., Mirancea, N., Krieg, T., and Fusenig, N.E. (1998). Dynamics of basement membrane formation by keratinocyte-fibroblast interactions in organotypic skin culture. Exp. Cell Res. 239:399–410.
  • Marinkovich, M.P., Keene, D.R., Rimberg, C.S., and Burgeson, R.E. (1993). Cellular origin of the dermal-epidermal basement membrane. Dev. Dyn. 197:255–267.
  • Jones, M.V., and Calabresi, P.A. (2007). Agar-gelatin for embedding tissues prior to paraffin processing. Biotechniques 42:569–570.
  • Fujisaki, H., Ebihara, T., Irie, S., Kobayashi, T., Adachi, E., Mochitate, K., and Hattori, S. (2007). Keratinocyte apoptosis on type I collagen fibrils is prevented by Erk1/2 activation under high calcium condition. Connect. Tissue Res. 48:159–169.
  • Eckhart, L., Ban, J., Fischer, H., and Tschachler, E. (2000). Caspase-14: Analysis of gene structure and mRNA expression during keratinocyte differentiation. Biochem. Biophys. Res. Commun. 277:655–659.
  • Lippens, S., Kockx, M., Knaapen, M., Mortier, L., Polakowska, R., Verheyen, A., Garmyn, M., Zwijsen, A., Formstecher, P., Huylebroeck, D., Vandenabeele, P., and Declercq, W. (2000). Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ. 7:1218–1224.
  • Ahmad, M., Srinivasula, S.M., Hegde, R., Mukattash, R., Fernandes-Alnemri, T., and Alnemri, E.S. (1998). Identification and characterization of murine caspase-14, a new member of the caspase family. Cancer Res. 58:5201–5205.
  • Varki, R., Sadowski, S., Uitto, J., and Pfendner, E. (2007). Epidermolysis bullosa. II. Type VII collagen mutations and phenotype-genotype correlations in the dystrophic subtypes. J. Med. Genet. 44:181–192.
  • Christiano, A.M., Lee, J.Y., Chen, W.J., LaForgia, S., and Uitto, J. (1995). Pretibial epidermolysis bullosa: Genetic linkage to COL7A1 and identification of a glycine-to-cysteine substitution in the triple-helical domain of type VII collagen. Hum. Mol. Genet. 4:1579–1583.
  • Chen, M., O’Toole, E.A., Muellenhoff, M., Medina, E., Kasahara, N., and Woodley, D.T. (2000). Development and characterization of a recombinant truncated type VII collagen “minigene”. Implication for gene therapy of dystrophic epidermolysis bullosa. J. Biol. Chem. 275:24429–24435.
  • Goto, M., Sawamura, D., Ito, K., Abe, M., Nishie, W., Sakai, K., Shibaki, A., Akiyama, M., and Shimizu, H. (2006). Fibroblasts show more potential as target cells than keratinocytes in COL7A1 gene therapy of dystrophic epidermolysis bullosa. J. Invest. Dermatol. 126:766–772.
  • Fritsch, A., Spassov, S., Elfert, S., Schlosser, A., Gache, Y., Meneguzzi, G., and Bruckner-Tuderman, L. (2009). Dominant-negative effects of COL7A1 mutations can be rescued by controlled overexpression of normal collagen VII. J. Biol. Chem. 284:30248–30256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.