235
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Decreased Body Fat, Elevated Plasma Transforming Growth Factor-β Levels, and Impaired BMP4-Like Signaling in Biglycan-Deficient Mice

, , , , &
Pages 5-13 | Received 08 Mar 2012, Accepted 21 Jul 2012, Published online: 23 Aug 2012

References

  • Young, M.F., Bi, Y., Ameye, L., and Chen, X.D. (2002). Biglycan knockout mice: New models for musculoskeletal diseases. Glycoconj. J. 19(4–5):257–262.
  • Schonherr, E., Witsch-Prehm, P., Harrach, B., Robenek, H., Rauterberg, J., and Kresse, H. (1995). Interaction of biglycan with type I collagen. J. Biol. Chem. 270(6):2776–2783.
  • Seidler, D.G., Faiyaz-Ul-Haque, M., Hansen, U., Yip, G.W., Zaidi, S.H., Teebi, A.S., Kiesel, L., and Gotte, M. (2006). Defective glycosylation of decorin and biglycan, altered collagen structure, and abnormal phenotype of the skin fibroblasts of an Ehlers–Danlos syndrome patient carrying the novel Arg270Cys substitution in galactosyltransferase I (beta4GalT-7). J. Mol. Med. 84(7):583–594.
  • Nelimarkka, L., Kainulainen, V., Schonherr, E., Moisander, S., Jortikka, M., Lammi, M., Elenius, K., Jalkanen, M., and Jarvelainen, H. (1997). Expression of small extracellular chondroitin/dermatan sulfate proteoglycans is differentially regulated in human endothelial cells. J. Biol. Chem. 272(19):12730–12737.
  • Kinsella, M.G., Tsoi, C.K., Jarvelainen, H.T., and Wight, T.N. (1997). Selective expression and processing of biglycan during migration of bovine aortic endothelial cells. The role of endogenous basic fibroblast growth factor. J. Biol. Chem. 272(1):318–325. Epub 1997/01/03.
  • Moreno, M., Munoz, R., Aroca, F., Labarca, M., Brandan, E., and Larrain, J. (2005). Biglycan is a new extracellular component of the Chordin-BMP4 signaling pathway. EMBO J. 24(7):1397–1405.
  • Chen, X.D., Fisher, L.W., Robey, P.G., and Young, M.F. (2004). The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation. FASEB J. 18(9):948–958.
  • Ward, M., and Ajuwon, K.M. (2011). Regulation of pre-adipocyte proliferation and apoptosis by the small leucine-rich proteoglycans, biglycan and decorin. Cell Prolif. 44(4):343–351.
  • Schaefer, L., Babelova, A., Kiss, E., Hausser, H.J., Baliova, M., Krzyzankova, M., Marsche, G., Young, M.F., Mihalik, D., Gotte, M., Malle, E., Schaefer, R.M., and Grone, H.J. (2005). The matrix component biglycan is proinflammatory and signals through toll-like receptors 4 and 2 in macrophages. J. Clin. Invest. 115(8):2223–2233.
  • Babelova, A., Moreth, K., Tsalastra-Greul, W., Zeng-Brouwers, J., Eickelberg, O., Young, M.F., Bruckner, P., Pfeilschifter, J., Schaefer, R.M., Grone, H.J., and Schaefer, L. (2009). Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J. Biol. Chem. 284(36):24035–24048.
  • Hildebrand, A., Romaris, M., Rasmussen, L.M., Heinegard, D., Twardzik, D.R., Border, W.A., and Ruoslahti, E. (1994). Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem. J. 302(Pt 2):527–534.
  • Droguett, R., Cabello-Verrugio, C., Riquelme, C., and Brandan, E. (2006). Extracellular proteoglycans modify TGF-beta bio-availability attenuating its signaling during skeletal muscle differentiation. Matrix Biol. 25(6):332–341.
  • Ruiz-Ortega, M., Rodriguez-Vita, J., Sanchez-Lopez, E., Carvajal, G., and Egido, J. (2007). TGF-beta signaling in vascular fibrosis. Cardiovasc. Res. 74(2):196–206.
  • Border, W.A., and Noble, N.A. (1994). Transforming growth factor beta in tissue fibrosis. N. Engl. J. Med. 331(19):1286–1292.
  • Clouthier, D.E., Comerford, S.A., and Hammer, R.E. (1997). Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-beta1 transgenic mice. J. Clin. Invest. 100(11):2697–2713.
  • Ueberham, E., Low, R., Ueberham, U., Schonig, K., Bujard, H., and Gebhardt, R. (2003). Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology 37(5):1067–1078.
  • Kolb, M., Margetts, P.J., Sime, P.J., and Gauldie, J. (2001). Proteoglycans decorin and biglycan differentially modulate TGF-beta-mediated fibrotic responses in the lung. Am. J. Physiol. Lung Cell Mol. Physiol. 280(6):L1327–L1334.
  • Williams, K.J., Qiu, G., Usui, H.K., Dunn, S.R., McCue, P., Bottinger, E., Iozzo, R.V., and Sharma, K. (2007). Decorin deficiency enhances progressive nephropathy in diabetic mice. Am. J. Pathol. 171(5):1441–1450.
  • Merline, R., Lazaroski, S., Babelova, A., Tsalastra-Greul, W., Pfeilschifter, J., Schluter, K.D., Gunther, A., Iozzo, R.V., Schaefer, R.M., and Schaefer, L. (2009). Decorin deficiency in diabetic mice: Aggravation of nephropathy due to overexpression of profibrotic factors, enhanced apoptosis and mononuclear cell infiltration. J. Physiol. Pharmacol. 60(Suppl. 4):5–13.
  • Xu, T., Bianco, P., Fisher, L.W., Longenecker, G., Smith, E., Goldstein, S., Bonadio, J., Boskey, A., Heegaard, A.M., Sommer, B., Satomura, K., Dominguez, P., Zhao, C., Kulkarni, A.B., Robey, P.G., and Young, M.F. (1998). Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat. Genet. 20(1):78–82.
  • Ameye, L., Aria, D., Jepsen, K., Oldberg, A., Xu, T., and Young, M.F. (2002). Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J. 16(7):673–680.
  • Westermann, D., Mersmann, J., Melchior, A., Freudenberger, T., Petrik, C., Schaefer, L., Lullmann-Rauch, R., Lettau, O., Jacoby, C., Schrader, J., Brand-Herrmann, S.M., Young, M.F., Schultheiss, H.P., Levkau, B., Baba, H.A., Unger, T., Zacharowski, K., Tschope, C., and Fischer, J.W. (2008). Biglycan is required for adaptive remodeling after myocardial infarction. Circulation 117(10):1269–1276.
  • Heegaard, A.M., Corsi, A., Danielsen, C.C., Nielsen, K.L., Jorgensen, H.L., Riminucci, M. Young, M.F., and Bianco, P. (2007). Biglycan deficiency causes spontaneous aortic dissection and rupture in mice. Circulation 115(21):2731–2738.
  • Chen, X.D., Shi, S., Xu, T., Robey, P.G., and Young, M.F. (2002). Age-related osteoporosis in biglycan-deficient mice is related to defects in bone marrow stromal cells. J. Bone. Miner. Res. 17(2):331–340.
  • Zhou, X., Johnston, T.P., Johansson, D., Parini, P., Funa, K., Svensson, J., and Hansson, G.K. (2009). Hypercholesterolemia leads to elevated TGF-beta1 activity and T helper 3-dependent autoimmune responses in atherosclerotic mice. Atherosclerosis 204(2):381–387.
  • Yen, T.H., Chen, Y., Fu, J.F., Weng, C.H., Tian, Y.C., Hung, C.C., Lin, J.L., and Yang, C.W. (2010). Proliferation of myofibroblasts in the stroma of renal oncocytoma. Cell Prolif. 43(3):287–296.
  • Huang, F., Thompson, J.C., Wilson, P.G., Aung, H.H., Rutledge, J.C., and Tannock, L.R. (2008). Angiotensin II increases vascular proteoglycan content preceding and contributing to atherosclerosis development. J. Lipid Res. 49(3):521–530.
  • Ignotz, R.A., and Massague, J. (1986). Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J. Biol. Chem. 261(9):4337–4345.
  • Cheng, J., and Grande, J.P. (2002). Transforming growth factor-beta signal transduction and progressive renal disease. Exp. Biol. Med. (Maywood) 227(11):943–956.
  • Ziyadeh, F.N., Hoffman, B.B., Han, D.C., Iglesias-De La Cruz, M.C., Hong, S.W., Isono, M., Chen, S., McGowan, T.A., and Sharma, K. (2000). Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc. Natl. Acad. Sci. USA. 97(14):8015–8020.
  • Hollnagel, A., Oehlmann, V., Heymer, J., Ruther, U., and Nordheim, A. (1999). Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J. Biol. Chem. 274(28):19838–19845.
  • Attisano, L., and Wrana, J.L. (2002). Signal transduction by the TGF-beta superfamily. Science 296(5573):1646–1647.
  • Fisher, L.W., Termine, J.D., and Young, M.F. (1989). Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several nonconnective tissue proteins in a variety of species. J. Biol. Chem. 264(8):4571–4576.
  • Yamaguchi, Y., Mann, D.M., and Ruoslahti, E. (1990). Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346(6281):281–284.
  • Border, W.A., Noble, N.A., Yamamoto, T., Harper, J.R., Yamaguchi, Y., Pierschbacher, M.D., and Ruoslahti, E. (1992). Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 360(6402):361–364.
  • Giri, S.N., Hyde, D.M., Braun, R.K., Gaarde, W., Harper, J.R., and Pierschbacher, M.D. (1997). Antifibrotic effect of decorin in a bleomycin hamster model of lung fibrosis. Biochem. Pharmacol. 54(11): 1205–1216.
  • Fischer, J.W., Kinsella, M.G., Clowes, M.M., Lara, S., Clowes, A.W., and Wight, T.N. (2000). Local expression of bovine decorin by cell-mediated gene transfer reduces neointimal formation after balloon injury in rats. Circ. Res. 86(6):676–683.
  • Melchior-Becker, A., Dai, G., Ding, Z., Schafer, L., Schrader, J., Young, M.F., and Fischer, J.W. (2011). Deficiency of biglycan causes cardiac fibroblasts to differentiate into a myofibroblast phenotype. J. Biol. Chem. 286(19): 17365–17375.
  • Choy, L., and Derynck, R. (2003). Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J. Biol. Chem. 278(11):9609–9619.
  • Calvo, J.C., Rodbard, D., Katki, A., Chernick, S., and Yanagishita, M. (1991). Differentiation of 3T3-L1 preadipocytes with 3-isobutyl-1-methylxanthine and dexamethasone stimulates cell-associated and soluble chondroitin 4-sulfate proteoglycans. J. Biol. Chem. 266(17): 11237–11244.
  • Bachem, M.G., Meyer, D., Schafer, W., Riess, U., Melchior, R., Sell, K.M., and Gressner, A.M. (1993). The response of rat liver perisinusoidal lipocytes to polypeptide growth regulator changes with their transdifferentiation into myofibroblast-like cells in culture. J. Hepatol. 18(1):40–52.
  • Knippenberg, M., Helder, M.N., Zandieh Doulabi, B., Wuisman, P.I., and Klein-Nulend, J. (2006). Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem. Biophys. Res. Commun. 342(3):902–908.
  • Kim, B.S., Kang, K.S., and Kang, S.K. (2010). Soluble factors from ASCs effectively direct control of chondrogenic fate. Cell Prolif. 43(3):249–261.
  • Huber, J., Loffler, M., Bilban, M., Reimers, M., Kadl, A., Todoric, J., Zeyda, M., Geyeregger, R., Schreiner, M., Weichhart, T., Leitinger, N., Waldhausl, W., and Stulnig, T.M. (2007). Prevention of high-fat diet-induced adipose tissue remodeling in obese diabetic mice by n-3 polyunsaturated fatty acids. Int. J. Obes. (Lond). 31(6):1004–1013.
  • Adapala, V.J., Adedokun, S.A., Considine, R.V., and Ajuwon, K.M. (2012). Acute inflammation plays a limited role in the regulation of adipose tissue COL1A1 protein abundance. J. Nutr. Biochem. 23(6): 567–572.
  • Moreth, K., Brodbeck, R., Babelova, A., Gretz, N., Spieker, T., Zeng-Brouwers, J., Pfeilschifter, J., Young, M.F., Schaefer, R.M., and Schaefer, L. (2010). The proteoglycan biglycan regulates expression of the B cell chemoattractant CXCL13 and aggravates murine lupus nephritis. J. Clin. Invest. 120(12):4251–4272.
  • Thompson, J., Wilson, P., Brandewie, K., Taneja, D., Schaefer, L., Mitchell, B., and Tannock, L.R. (2011). Renal accumulation of biglycan and lipid retention accelerates diabetic nephropathy. Am. J. Pathol. 179(3): 1179–1187.
  • Kamanna, V.S. (2002). Low density lipoproteins and mitogenic signal transduction processes: Role in the pathogenesis of renal disease. Histol. Histopathol. 17(2):497–505.
  • Kamanna, V.S., Roh, D.D., and Kirschenbaum, M.A. (1998). Hyperlipidemia and kidney disease: Concepts derived from histopathology and cell biology of the glomerulus. Histol. Histopathol. 13(1): 169–179.
  • Abrass, C.K. (2004). Cellular lipid metabolism and the role of lipids in progressive renal disease. Am. J. Nephrol. 24(1):46–53.
  • Fan, J., Shen, H., Sun, Y., Li, P., Burczynski, F., Namaka, M., and Gong, Y. (2006). Bone morphogenetic protein 4 mediates bile duct ligation induced liver fibrosis through activation of Smad1 and ERK1/2 in rat hepatic stellate cells. J. Cell. Physiol. 207(2):499–505.
  • Tominaga, T., Abe, H., Ueda, O., Goto, C., Nakahara, K., Murakami, T., Matsubara, T., Mima, A., Nagai, K., Araoka, T., Kishi, S., Fukushima, N., Jishage, K., and Doi, T. (2011). Activation of bone morphogenetic protein 4 signaling leads to glomerulosclerosis that mimics diabetic nephropathy. J. Biol. Chem. 286(22):20109–20116.
  • Huang, H., Song, T.J., Li, X., Hu, L., He, Q., Liu, M., Lane, M.D., and Tang, Q.Q. (2009). BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl. Acad. Sci. USA. 106(31):12670–12675.
  • Satyanarayana, A., Klarmann, K.D., Gavrilova, O., and Keller, J.R. (2012). Ablation of the transcriptional regulator Id1 enhances energy expenditure, increases insulin sensitivity, and protects against age and diet induced insulin resistance, and hepatosteatosis. FASEB J. 26(1):309–323.
  • Hou, T.Y., Ward, S.M., Murad, J.M., Watson, N.P., Israel, M.A., and Duffield, G.E. (2009). ID2 (inhibitor of DNA binding 2) is a rhythmically expressed transcriptional repressor required for circadian clock output in mouse liver. J. Biol. Chem. 284(46):31735–31745.
  • Akerfeldt, M.C., and Laybutt, D.R. (2011). Inhibition of Id1 augments insulin secretion and protects against high-fat diet-induced glucose intolerance. Diabetes 60(10):2506–2514.
  • Nawrocki, A.R., Hofmann, S.M., Teupser, D., Basford, J.E., Durand, J.L., Jelicks, L.A., Woo, C.W., Kuriakose, G., Factor, S.M., Tanowitz, H.B., Hui, D.Y., Tabas, I., and Scherer, P.E. (2010). Lack of association between adiponectin levels and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 30(6):1159–1165.
  • Michelsen, K.S., Wong, M.H., Shah, P.K., Zhang, W., Yano, J., Doherty, T.M., Akira, S., Rajavashisth, T.B., and Arditi, M. (2004). Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl. Acad. Sci. USA. 101(29): 10679–10684.
  • Methia, N., Andre, P., Denis, C.V., Economopoulos, M., and Wagner, D.D. (2001). Localized reduction of atherosclerosis in von Willebrand factor-deficient mice. Blood 98(5):1424–1428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.