119
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Fragility of Reconstituted Type V Collagen Fibrils with the Chain Composition of α1(V)α2(V)α3(V) Respective of the D-Periodic Banding Pattern

, , , &
Pages 41-48 | Received 20 Feb 2012, Accepted 25 Sep 2012, Published online: 03 Dec 2012

References

  • Birk, D.E. (2001). Type V collagen: Heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron. 32:223–237.
  • Fessler, J.H., and Fessler, L.I. (1987). Structure and function of collagen types. In Type V collagen, R.E. Burgeson and R. Mayne (eds.) pp. 81–103. Orlando, FL: Academic Press.
  • Myllyharju, J., and Kivirikko, K.I. (2004). Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20: 33–43.
  • Adachi, E., Hopkinson, I., and Hayashi, T. (1997). Basement-membrane stromal relationships: Interactions between collagen fibrils and the lamina densa. Int. Rev. Cytol. 173:73–156.
  • Niyibizi, C., Fietzek, P.P., and van der Rest, M. (1984). Human placenta type V collagens. Evidence for the existence of an α1(V)α2(V)α3(V) collagen molecule. J. Biol. Chem. 259:14170–14174.
  • Rhodes, R.K., and Miller, E.J. (1981). Evidence for the existence of an α1(V)α2(V)α3(V) collagen molecule in human placental tissue. Coll. Relat. Res. 1:337–343.
  • Brown, R.A., and Weiss, J.B. (1979). Type V collagen: Possible shared identity of αA, αB and αC chains. FEBS Lett. 106:71–75.
  • Abedin, M.Z., Ayad, S., and Weiss, J.B. (1981). Type V collagen: The presence of appreciable amounts of α3(V) chain in uterus. Biochem. Biophys. Res. Commun. 102:1237–1245.
  • Abedin, M.Z., Ayad, S., and Weiss, J.B. (1982). Isolation and native characterization of cysteine-rich collagens from bovine placental tissues and uterus and their relationship to types IV and V collagens. Biosci. Rep. 2:493–502.
  • Welsh, C., Gay, S., Rhodes, R.K., Pfister, R., and Miller, E.J. (1980). Collagen heterogeneity in normal rabbit cornea. I. Isolation and biochemical characterization of the geneticallydistinct collagens. Biochim. Biophys. Acta. 625:78–88.
  • Takemura, Y., Mizuno, K., Imamura, Y., and Hayashi, T. (2003). Preferential liberation of type V collagen from bovine corneal stroma by limited treatment with proteases. Connect. Tissue 35:133–139.
  • Wenstrup, R.J., Florer, J.B., Brunskill, E.W., Bell, S.M., Chervoneva, I., and Birk, D.E. (2004). Type V collagen controls the initiation of collagen fibril assembly. J. Biol. Chem. 279:53331–53337.
  • Andrikopoulos, K., Liu, X., Keene, D.R., Jaenisch, R., and Ramirez, F. (1995). Targeted mutation in the col5a2 gene reveals a regulatory role for type V collagen during matrix assembly. Nat. Genet. 9:31–36.
  • Malfait, F., and De Paepe, A. (2005). Molecular genetics in classic Ehlers–Danlos syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 139C:17–23.
  • Schwarze, U., Atkinson, M., Hoffman, G.G., Greenspan, D.S., and Byers, P.H. (2000). Null alleles of the COL5A1 gene of type V collagen are a cause of the classical forms of Ehlers–Danlos syndrome (types I and II). Am. J. Hum. Genet. 66:1757–1765.
  • Hoffman, G.G., Dodson, G.E., Cole, W.G., and Greenspan, D.S. (2008). Absence of apparent disease causing mutations in COL5A3 in 13 patients with hypermobility Ehlers–Danlos syndrome. Am. J. Med. Genet. A. 146A:3240–3241.
  • Huang, G., Ge, G., Wang, D., Gopalakrishnan, B., Butz, D.H., Colman, R.J., Nagy, A., and Greenspan, D.S. (2011). α3(V) collagen is critical for glucose homeostasis in mice due to effects in pancreatic islets and peripheral tissues. J. Clin. Invest. 121:769–783.
  • Nanaev, A.K., Milovanov, A.P., and Domogatsky, S.P. (1993). Immunohistochemical localization of extracellular matrix in perivillous fibrinoid of normal human term placenta. Histochemistry 100:341–346.
  • Dart, M.L., Jankowska-Gan, E., Huang, G., Roenneburg, D.A., Keller, M.R., Torrealba, J.R., Rhoads, A., Kim, B., Bobadilla, J.L., Haynes, L.D., Wilkes, D.S., Burlingham, W.J., and Greenspan, D.S. (2010). Interleukin-17-dependent autoimmunity to collagen type V in atherosclerosis. Circ. Res. 107:1106–1116.
  • Greenspan, D.S. (2005). Biosynthetic processing of collagen molecules. Top. Curr. Chem. 247:149–183.
  • Ge, G., and Greenspan, D.S. (2006). Developmental roles of the BMP1/TLD metalloproteinases. Birth Defects Res. C. Embryo. Today 78:47–68.
  • Kleman, J.P., Aeschlimann, D., Paulsson, M., and van der Rest, M. (1995). Transglutaminase-catalyzed cross-linking of fibrils of collagen V/XI in A204 rhabdomyosarcoma cells. Biochemistry 34:13768–13775.
  • Niyibizi, C., and Eyre, D.R. (1994). Structural characteristics of cross-linking sites in type V collagen of bone. Chain specificities and heterotypic links to type I collagen. Eur. J. Biochem. 224:943–950.
  • Birk, D.E., Fitch, J.M., Babiarz, J.P., Doane, K.J., and Linsenmayer, T.F. (1990). Collagen fibrillogenesis in vitro: Interaction of types I and V collagen regulates fibril diameter. J. Cell. Sci. 95(Pt 4):649–657.
  • Bonod-Bidaud, C., Beraud, M., Vaganay, E., Delacoux, F., Font, B., Hulmes, D.J., and Ruggiero, F. (2007). Enzymatic cleavage specificity of the proα1(V) chain processing analysed by site-directed mutagenesis. Biochem. J. 405:299–306.
  • Unsold, C., Pappano, W.N., Imamura, Y., Steiglitz, B.M., and Greenspan, D.S. (2002). Biosynthetic processing of the pro-α1(V)2pro-α2(V) collagen heterotrimer by bone morphogenetic protein-1 and furin-like proprotein convertases. J. Biol. Chem. 277:5596–5602.
  • Galvin, N.J., Vance, P.M., Dixit, V.M., Fink, B., and Frazier, W.A. (1987). Interaction of human thrombospondin with types I-V collagen: Direct binding and electron microscopy. J. Cell Biol. 104:1413–1422.
  • Takagi, J., Fujisawa, T., Usui, T., Aoyama, T., and Saito, Y. (1993). A single chain 19-kDa fragment from bovine thrombospondin binds to type V collagen and heparin. J. Biol. Chem. 268:15544–15549.
  • Mizuno, K., and Hayashi, T. (1996). Separation of the subtypes of type V collagen molecules, [α1(V)]2α2(V) and α1(V)α2(V)α3(V), by chain composition-dependent affinity for heparin: Single α1(V) chain shows intermediate heparin affinity between those of the type V collagen subtypes composed of [α1(V)]2α2(V) and of α1(V)α2(V)α3(V). J. Biochem. (Tokyo) 120:934–939.
  • Yaoi, Y., Hashimoto, K., Koitabashi, H., Takahara, K., Ito, M., and Kato, I. (1990). Primary structure of the heparin-binding site of type V collagen. Biochim. Biophys. Acta 1035:139–145.
  • Ziats, N.P., and Anderson, J.M. (1993). Human vascular endothelial cell attachment and growth inhibition by type V collagen. J. Vasc. Surg. 17:710–718.
  • Fukuda, K., Koshihara, Y., Oda, H., Ohyama, M., and Ohyama, T. (1988). Type V collagen selectively inhibits human endothelial cell proliferation. Biochem. Biophys. Res. Commun. 151:1060–1068.
  • Sakata, N., Jimi, S., Takebayashi, S., and Marques, M.A. (1992). Type V collagen represses the attachment, spread, and growth of porcine vascular smooth muscle cells in vitro. Exp. Mol. Pathol. 56:20–36.
  • Kihara, T., Imamura, Y., Takemura, Y., Mizuno, K., Adachi, E., and Hayashi, T. (2008). Intercellular accumulation of type V collagen fibrils in accordance with cell aggregation. J. Biochem. 144:625–633.
  • Kihara, T., Takemura, Y., Imamura, Y., Mizuno, K., and Hayashi, T. (2004). Reconstituted type V collagen fibrils as cementing materials in the formation of cell clumps in culture. Cell Tissue Res. 318:343–352.
  • Morris, N.P., Watt, S.L., Davis, J.M., and Bächinger, H.P. (1990). Unfolding intermediates in the triple helix to coil transition of bovine type XI collagen and human type V collagens α12α2 and α1α2α3. J. Biol. Chem. 265:10081–10087.
  • Mizuno, K., Adachi, E., Imamura, Y., Katsumata, O., and Hayashi, T. (2001). The fibril structure of type V collagen triple-helical domain. Micron. 32:317–323.
  • Konomi, H., Hayashi, T., Nakayasu, K., and Arima, M. (1984). Localization of type V collagen and type IV collagen in human cornea, lung, and skin. Immunohistochemical evidence by anti-collagen antibodies characterized by immunoelectroblotting. Am. J. Pathol. 116: 417–426.
  • Miller, E.J., and Rhodes, R.K. (1982). Preparation and characterization of the different types of collagen. Methods Enzymol. 82 Pt A:33–64.
  • Sage, H., and Bornstein, P. (1979). Characterization of a novel collagen chain in human placenta and its relation to AB collagen. Biochemistry 18:3815–3822.
  • Adachi, E., and Hayashi, T. (1985). In vitro formation of fine fibrils with a D-periodic banding pattern from type V collagen. Coll. Relat. Res. 5:225–232.
  • Fichard, A., Kleman, J.P., and Ruggiero, F. (1995). Another look at collagen V and XI molecules. Matrix. Biol. 14:515–531.
  • Mayne, R., Brewton, R.G., Mayne, P.M., and Baker, J.R. (1993). Isolation and characterization of the chains of type V/type XI collagen present in bovine vitreous. J. Biol. Chem. 268:9381–9386.
  • Dreisewerd, K., Rohlfing, A., Spottke, B., Urbanke, C., and Henkel, W. (2004). Characterization of whole fibril-forming collagen proteins of types I, III, and V from fetal calf skin by infrared matrix-assisted laser desorption ionization mass spectrometry. Anal. Chem. 76:3482–3491.
  • Henkel, W., and Dreisewerd, K. (2007). Cyanogen bromide peptides of the fibrillar collagens I, III, and V and their mass spectrometric characterization: Detection of linear peptides, peptide glycosylation, and cross-linking peptides involved in formation of homo- and heterotypic fibrils. J. Proteome. Res. 6:4269–4289.
  • Bann, J.G., and Bächinger, H.P. (2000). Glycosylation/hydroxylation-induced stabilization of the collagen triple helix. 4-trans-hydroxyproline in the Xaa position can stabilize the triple helix. J. Biol. Chem. 275:24466–24469.
  • Bann, J.G., Bächinger, H.P., and Peyton, D.H. (2003). Role of carbohydrate in stabilizing the triple-helix in a model for a deep-sea hydrothermal vent worm collagen. Biochemistry 42:4042–4048.
  • Bann, J.G., Peyton, D.H., and Bächinger, H.P. (2000). Sweet is stable: Glycosylation stabilizes collagen. FEBS Lett. 473:237–240.
  • Lauer-Fields, J.L., Malkar, N.B., Richet, G., Drauz, K., and Fields, G.B. (2003). Melanoma cell CD44 interaction with the α1(IV)1263-1277 region from basement membrane collagen is modulated by ligand glycosylation. J. Biol. Chem. 278:14321–14330.
  • Bächinger, H.P., and Davis, J.M. (1991). Sequence specific thermal stability of the collagen triple helix. Int. J. Biol. Macromol. 13: 152–156.
  • Kyte, J., and Doolittle, R.F. (1982). A simple method for displaying the hydropathyic character of a protein. J. Mol. Biol. 157:10532.
  • Linsenmayer, T.F., Gibney, E., Igoe, F., Gordon, M.K., Fitch, J.M., Fessler, L.I., and Birk, D.E. (1993). Type V collagen: Molecular structure and fibrillar organization of the chicken α1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J. Cell Biol. 121:1181–1189.
  • Notbohm, H., Nokelainen, M., Myllyharju, J., Fietzek, P.P., Muller, P.K., and Kivirikko, K.I. (1999). Recombinant human type II collagens with low and high levels of hydroxylysine and its glycosylated forms show marked differences in fibrillogenesis in vitro. J. Biol. Chem. 274: 8988–8992.
  • Brodsky, B., and Persikov, A.V. (2005). Molecular structure of the collagen triple helix. Adv. Protein Chem. 70:301–339.
  • Adachi, E., Hayashi, T., and Hashimoto, P.H. (1987). Type V collagen in splenic reticular fibers of the macaque monkey. Acta. Anat. (Basel) 129:169–175.
  • Adachi, E., Hayashi, T., and Hashimoto, P.H. (1991). A comparison of the immunofluorescent localization of collagen types I, III, and V with the distribution of reticular fibers on the same liver sections of the snow monkey (Macaca fuscata). Cell Tissue Res. 264:1–8.
  • Adachi, E., and Hayashi, T. (1994). Anchoring of epithelia to underlying connective tissue: Evidence of frayed ends of collagen fibrils directly merging with meshwork of lamina densa. J. Electron. Microsc. (Tokyo) 43:264–271.
  • Sumiyoshi, H., Kitamura, H., Matsuo, N., Tatsukawa, S., Ishikawa, K., Okamoto, O., Fujikura, Y., Fujiwara, S., and Transient, Y.H. (2012). Expression of mouse Pro-α3(V) collagen gene (Col5a3) in Wound Healing. Connect. Tissue Res. 53:313–317.
  • Huang, G., and Greenspan, D.S. (2012). M roles in the function of metabolic tissues. Trends Endocrinol. Metab. 23:16–22.
  • Gopalakrishnan, B., Wang, W.M., and Greenspan, D.S. (2004). Biosynthetic processing of the Pro-α1(V)Pro-α2(V)Pro-α3(V) procollagen heterotrimer. J. Biol. Chem. 279:30904–30912.
  • Bonod-Bidaud, C., Roulet, M., Hansen, U., Elsheikh, A., Malbouyres, M., Ricard-Blum, S., Faye, C., Vaganay, E., Rousselle, P., and Ruggiero, F. (2012). In vivo evidence for a bridging role of a collagen V subtype at the epidermis-dermis interface. J. Invest. Dermatol. 132:1841–1849.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.