1,239
Views
60
CrossRef citations to date
0
Altmetric
Review Article

Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering

&
Pages 175-194 | Received 04 Nov 2014, Accepted 04 Mar 2015, Published online: 22 Apr 2015

References

  • Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005;36:S20–7
  • Greenwald AS, Boden S, Goldberg V, Khan Y, Laurencin C, Rosier R. Bone grafts substitutes: facts, fictions & applications. Rosemont, IL: American Academy of Orthopedic Surgeons; 2003
  • Van heest A, Swiontkowski M. Bone-graft substitutes. Lancet 1999;353:28–9
  • Cypher TJ, Grossman JP. Biological principles of bone graft healing. J Foot Ankle Surg 1996;35:413–17
  • Costantino PD, Friedman CD. Synthetic bone graft substitutes. Otolaryngol Clin North Am 1994;27:1037–74
  • Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury 2011;42:S16–21
  • Alexander JW. Leonard’s orthopedic surgery of the dog and cat. Florida: WB Sounders Company; 1985
  • Alexander JW. Bone grafting. Vet Clin North Am Small Anim Pract 1987;17:811–19
  • Brinker WO, Piermattei DL, Flo GL. Bone grafting. In: Brinker WO, Piermattei DL, Flo GL, eds. Small animal orthopedics and fracture repair. 3rd ed. Florida: WB Saunders Company; 1997:147–53
  • Fitch R, Kerwin S, Newman-Gage H, Sinibaldi KR. Bone autografts and allografts in dogs. Comp Vet Cont Ed 1997;19:558–75
  • Fox SM. Cancellous bone grafting in the dog: an overview. J Am Anim Hosp Assoc 1984;20:840–8
  • McLaughlin RM, Roush JK. Autogenous cancellous and cortico-cancellous bone grafting. Vet Med 1998;93:1071–4
  • Lohmann CH, Andreacchio D, Koster G, Carnes DL, Dean BD, Schwartz Z. Tissue response and osteoinduction of human bone grafts in vivo. Arch Orthop Trauma Surg 2001;121:583–90
  • Pokorny JJ, Davids H, Moneim M. Vascularized bone graft for scaphoid nonunion. Tech Hand Up Extrem Surg 2003;7:32–6
  • Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 2014;9:1–27
  • Rifas L. T-cell cytokine induction of BMP-2 regulates human mesenchymal stromal cell differentiation and mineralization. J Cell Biochem 2006;98:706–14
  • Schmidt-Bleek K, Schell H, Lienau J, Schulz N, Hoff P, Pfaff M, Schmidt G, Martin C, Perka C, Buttgereit F, Volk HD, Duda G. Initial immune reaction and angiogenesis in bone healing. J Tissue Eng Regen Med 2014;8:120–30
  • Ebraheim NA, Elgafy H, Xu R. Bone-graft harvesting from iliac and fibular donor sites: techniques and complications. J Am Acad Orthop Surg 2001;9:210–18
  • Bauer TW, Muschler GF. Bone graft materials: an overview of the basic science. Clin Orthop Rel Res 2000;371:10–27
  • Keating JF, McQueen MM. Substitutes for autologous bone graft in orthopaedic trauma. J Bone Joint Surg Am 2001;83-B:3–8
  • Kim DH, Jenis L, Berta SC, Vaccaro AR. Bone graft alternatives in spinal fusion surgery. Cur Opin Orthop 2003;14:127–37
  • Ehrler DM, Vaccaro AR. The use of allograft bone in lumbar spine surgery. Clin Orthop Related Res 2000;38–45
  • Sandhu HS, Grewal HS, Parvataneni H. Bone grafting for spinal fusion. Orthop Clin North Am 1999;30:685–98
  • Boyce T, Edwards J, Scarborough N. Allograft bone. The influence of processing on safety and performance. Orthop Clin North Am 1999;30:571–81
  • Simonds R, Holmberg SD, Hurwitz RL, Coleman TR, Bottenfield S, Conley LJ, Kohlenberg SH, Castro KG, Dahan BA, Schable CA. Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med 1992;326:726–32
  • Parikh SN. Bone graft substitutes: past, present, future. J Postgrad Med 2002;48:142–8
  • Gomes KU, Carlini JL, Biron C, Rapoport A, Dedivitis RA. Use of allogeneic bone graft in maxillary reconstruction for installation of dental implants. J Oral Maxillofac Surg 2008;66:2335–8
  • Centers for Disease Control and Prevention (CDC). Update: allograft-associated bacterial infections – United States, 2002. Morb Mortal Wkly Rep 2002;51:207–10
  • Davy DT. Biomechanical issues in bone transplantation. Orthop Clin North Am 1999;30:553–63
  • Enneking WF, Campanacci DA. Retrieved human allografts: a clinicopathological study. J Bone Joint Surg Am Vol 2001;83-A:971–86
  • Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg Am Vol 1991;73:1123–42
  • Graham SM, Leonidou A, Aslam-Pervez N, Hamza A, Panteliadis P, Heliotis M, Mantalaris A, Tsiridis E. Biological therapy of bone defects: the immunology of bone allo-transplantation. Expert Opin Biol Ther 2010;10:885–901
  • Hornicek FJ, Gebhardt MC, Tomford WW, Sorger JI, Zavatta M, Menzner JP, Mankin HJ. Factors affecting nonunion of the allograft-host junction. Clin Orthop Related Res 2001;382:87–98
  • Khan SN, Cammisa FP, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg 2005;13:77–86
  • Stevenson S, Li XQ, Davy DT, Klein L, Goldberg VM. Critical biological determinants of incorporation of non-vascularized cortical bone grafts. Quantification of a complex process and structure. J Bone Joint Surg Am Vol 1997;79:1–16
  • Delloye C, Cornu O, Druez V, Barbier O. Bone allografts what they can offer and what they cannot. J Bone Joint Surg Br Vol 2007;89:574–80
  • Fox EJ, Hau MA, Gebhardt MC, Hornicek FJ, Tomford WW, Mankin HJ. Long-term followup of proximal femoral allografts. Clin Orthop Related Res 2002;397:106–13
  • Donati D, Giacomini S, Gozzi E, Salphale Y, Mercuri M, Mankin HJ, Springfield DS, Gebhardt MC. Allograft arthrodesis treatment of bone tumors: a two-center study. Clin Orthop Related Res 2002;400:217–24
  • Berrey BH Jr, Lord CF, Gebhardt MC, Mankin HJ. Fractures of allografts. Frequency, treatment, and end-results. J Bone Joint Surg Am Vol 1990;72:825–33
  • Thompson RC Jr, Garg A, Clohisy DR, Cheng EY. Fractures in large-segment allografts. Clin Orthop Related Res 2000;370:227–35
  • Griffon DJ, McLaughlin RM, Hoskinson JJ. Effects of a bone – inducing agent derived from a cultured human osteosarcoma cell line after orthopedic and heterotopic implantation in the dog. Vet Com Orthop Traumatol 1996;9:22–8
  • Oonishi H, Kushitani S, Yasukawa E, Kawakami H, Nakata A, Koh S, Hench LL, Wilson J, Tsuji E, Sugihara T. Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Related Res 1997;334:316–25
  • Trevor PB, Stevenson S, Carrig CB, Waldron DR, Smith MM. Evaluation of biocompatible osteoconductive polymer as an orthopedic implant in dogs. J Am Vet Med Assoc 1992;200:1651–60
  • Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004;32:477–86
  • Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg 2004;86:1541–58
  • Wang Y, Cui F, Hu K, Zhu X, Fan D. Bone regeneration by using scaffold based on mineralized recombinant collagen. J Biomed Mater Res B Appl Biomater 2008;86:29–35
  • Bigham-Sadegh A, Karimi I, Alebouye M, Shafie-Sarvestani Z, Oryan A. Evaluation of bone healing in canine tibial defects filled with cortical autograft, commercial-DBM, calf fetal DBM, omentum and omentum-calf fetal DBM. J Vet Sci 2013;14:337–43
  • Du C, Cui F, Feng Q, Zhu X, De Groot K. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. J Biomed Mater Res 1998;42:540–8
  • Li J, Lin Z, Zheng Q, Guo X, Lan S, Liu S, Yang S. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2-related peptide and type I collagen. Mater Sci Eng C 2010;30:1272–9
  • El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices 2005;2:87–101
  • McAuliffe JA. Bone graft substitutes. J Hand Ther 2003;16:180–7
  • Wozney JM, Seeherman HJ. Protein-based tissue engineering in bone and cartilage repair. Curr Opin Biotechnol 2004;15:392–8
  • Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu Rev Mater Scie 1998;28:271–98
  • Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 2005;309:275–8
  • Bradt J-H, Mertig M, Teresiak A, Pompe W. Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem Mater 1999;11:2694–701
  • Scott MA, Levi B, Askarinam A, Nguyen A, Rackohn T, Ting K, Soo C, James AW. Brief review of models of ectopic bone formation. Stem Cells Dev 2012;21:655–67
  • Luca L, Rougemont AL, Walpoth BH, Boure L, Tami A, Anderson JM, Jordan O, Gurny R. Injectable rhBMP-2-loaded chitosan hydrogel composite: osteoinduction at ectopic site and in segmental long bone defect. J Biomed Mater Res A 2011;96:66–74
  • Kim CS, Kim JI, Kim J, Choi SH, Chai JK, Kim CK, Cho KS. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials 2005;26:2501–7
  • Liang G, Yang Y, Oh S, Ong JL, Zheng C, Ran J, Yin G, Zhou D. Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous beta-tricalcium phosphate in mice. Biomaterials 2005;26:4265–71
  • Bigham AS, Shadkhast M, Bigham Sadegh A, Shafiei Z, Lakzian A, Khalegi MR. Evaluation of osteoinduction properties of the demineralized bovine foetal growth plate powder as a new xenogenic biomaterial in rat. Res Vet Sci 2011;91:306–10
  • Urist MR, Lietze A, Mizutani H, Takagi K, Triffitt JT, Amstutz J, Delange R, Termine J, Am Finerman G. A bovine low molecular weight bone morphogenetic protein (BMP) fraction. Clin Orthop Related Res 1982;162:219–32
  • Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Related Res 1986;205:299–308
  • Schmitz JP, Schwartz Z, Hollinger JO, Boyan BD. Characterization of rat calvarial nonunion defects. Cells Tissues Organs 1990;138:185–92
  • Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1990;1:60–8
  • Patel ZS, Young S, Tabata Y, Jansen JA, Wong MEK, Mikos AG. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 2008;43:931–40
  • Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 2007;2:1–10
  • Martini L, Fini M, Giavaresi G, Giardino R. Sheep model in orthopedic research: a literature review. Comp Med 2001;51:292–9
  • Turner CH, Roeder RK, Wieczorek A, Foroud T, Liu G, Peacock M. Variability in skeletal mass, structure, and biomechanical properties among inbred strains of rats. J Bone Miner Res 2001;16:1532–9
  • Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 1998;139:663–70
  • Wang X, Mabrey JD, Agrawal CM. An interspecies comparison of bone fracture properties. Biomed Mater Eng 1998;8:1–9
  • Holstein JH, Garcia P, Histing T, Kristen A, Scheuer C, Menger MD, Pohlemann T. Advances in the establishment of defined mouse models for the study of fracture healing and bone regeneration. J Orthop Trauma 2009;23:S31–8
  • Viateau V, Logeart-Avramoglou D, Guillemin G, Petite H. Sourcebook of models for biomechanical research. In: Conn P, ed. Animal models for bone tissue engineering purposes. Totowa: Humana Press Inc; 2008:725–35
  • Tsukamoto T, Pape HC. Animal models for trauma research: what are the options? Shock 2009;31:3–10
  • Khosravi R, Trackman PC. Diabetes-induced fibrotic matrix inhibits intramembranous bone healing. J Cell Commun Signal 2014. [Epub ahead of print]
  • Liao YH, Chang YH, Sung LY, Li KC, Yeh CL, Yen TC, Hwang SM, Lin KJ, Hu YC. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials 2014;35:4901–10
  • Xiao L, Ueno D, Catros S, Homer-Bouthiette C, Charles L, Kuhn L, Hurley MM. Fibroblast growth factor-2 isoform (low molecular weight/18 kDa) overexpression in preosteoblast cells promotes bone regeneration in critical size calvarial defects in male mice. Endocrinology 2014;155:965–74
  • Kimelman-Bleich N, Pelled G, Zilberman Y, Kallai I, Mizrahi O, Tawackoli W, Gazit Z, Gazit D. Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther 2011;19:53–9
  • Kimelman-Bleich N, Pelled G, Sheyn D, Kallai I, Zilberman Y, Mizrahi O, Tal Y, Tawackoli W, Gazit Z, Gazit D. The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based bone formation in vivo. Biomaterials 2009;30:4639–48
  • Tu J, Wang H, Li H, Dai K, Wang J, Zhang X. The in vivo bone formation by mesenchymal stem cells in zein scaffolds. Biomaterials 2009;30:4369–76
  • Collins CJ, Vivanco JF, Sokn SA, Williams BO, Burgers TA, Ploeg HL. Fracture healing in mice lacking Pten in osteoblasts: a micro-computed tomography image-based analysis of the mechanical properties of the femur. J Biomech 2015;48:310–7
  • Wehrle E, Liedert A, Heilmann A, Wehner T, Bindl R, Fischer L, Haffner-Luntzer M, Jakob F, Schinke T, Amling M, Ignatius A. The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice. Dis Model Mech 2015;8:93–104
  • Pang J, Ye M, Cao Y, Zheng Y, Guo H, Zhao Y, Zhan H, Shi Y. Ovariectomy-induced osteopenia influences the middle and late periods of bone healing in a mouse femoral osteotomy model. Rejuvenation Res 2014. [Epub ahead of print]
  • Guihard P, Boutet MA, Brounais-Le Royer B, Gamblin AL, Amiaud J, Renaud A, Berreur M, Redini F, Heymann D, Layrolle P, Blanchard F. Oncostatin M, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol 2015;185:765–75
  • Brown ML, Yukata K, Farnsworth CW, Chen DG, Awad H, Hilton MJ, O'Keefe RJ, Xing L, Mooney RA, Zuscik MJ. Delayed fracture healing and increased callus adiposity in a C57BL/6J murine model of obesity-associated type 2 diabetes mellitus. PLoS One 2014;9:e99656
  • Lauing KL, Sundaramurthy S, Nauer RK, Callaci JJ. Exogenous activation of Wnt/beta-catenin signaling attenuates binge alcohol-induced deficient bone fracture healing. Alcohol Alcohol 2014;49:399–408
  • Stephan SJ, Tholpady SS, Gross B, Petrie-Aronin CE, Botchway EA, Nair LS, Ogle RC, Park SS. Injectable tissue-engineered bone repair of a rat calvarial defect. Laryngoscope 2010;120:895–901
  • Zhao J, Shen G, Liu C, Wang S, Zhang W, Zhang X, Zhang X, Ye D, Wei J, Zhang Z, Jiang X. Enhanced healing of rat calvarial defects with sulfated chitosan-coated calcium-deficient hydroxyapatite/bone morphogenetic protein 2 scaffolds. Tissue Eng A 2012;18:185–97
  • Yoshimaki T, Sato S, Tsunori K, Shino H, Iguchi S, Arai Y, Ito K, Ogiso B. Bone regeneration with systemic administration of lactoferrin in non-critical-sized rat calvarial bone defects. J Oral Sci 2013;55:343–8
  • Trotta DR, Gorny C Jr, Zielak JC, Gonzaga CC, Giovanini AF, Deliberador TM. Bone repair of critical size defects treated with mussel powder associated or not with bovine bone graft: histologic and histomorphometric study in rat calvaria. J Craniomaxillofac Surg 2014;42:738–43
  • Fang J, Yang Z, Tan S, Tayag C, Nimni ME, Urata M, Han B. Injectable gel graft for bone defect repair. Regen Med 2014;9:41–51
  • Sun JS, Chen PY, Tsuang YH, Chen MH, Chen PQ. Vitamin-D binding protein does not enhance healing in rat bone defects: a pilot study. Clin Orthop Related Res 2009;467:3156–64
  • Niu Z, Wang L, Hu X, Wang H, Ouyang J, Huang W, Yu L, Qiu X. [Promotion effect of nuclear factor kappa B p65 on early fracture healing of rat radius by elevating prostaglandins E2 production and regulating inhibitor of DNA binding 2 protein expression]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2011;25:569–74
  • Thormann U, Khawassna TE, Ray S, Duerselen L, Kampschulte M, Lips K, von Dewitz H, Heinemann S, Heiss C, Szalay G, Langheinrich AC, Ignatius A, Schnettler R, Alt V. Differences of bone healing in metaphyseal defect fractures between osteoporotic and physiological bone in rats. Injury 2014;45:487–93
  • Stewart R, Goldstein J, Eberhardt A, Chu GT, Gilbert S. Increasing vascularity to improve healing of a segmental defect of the rat femur. J Orthop Trauma 2011;25:472–6
  • Glatt V, Miller M, Ivkovic A, Liu F, Parry N, Griffin D, Vrahas M, Evans C. Improved healing of large segmental defects in the rat femur by reverse dynamization in the presence of bone morphogenetic protein-2. J Bone Joint Surg Ame Vol 2012;94:2063–73
  • Angle SR, Sena K, Sumner DR, Virkus WW, Virdi AS. Healing of rat femoral segmental defect with bone morphogenetic protein-2: a dose response study. J Musculoskelet Neuronal Interact 2012;12:28–37
  • Sonnet C, Simpson CL, Olabisi RM, Sullivan K, Lazard Z, Gugala Z, Peroni JF, Weh JM, Davis AR, West JL, Olmsted-Davis EA. Rapid healing of femoral defects in rats with low dose sustained BMP2 expression from PEGDA hydrogel microspheres. J Orthop Res 2013;31:1597–604
  • Chakkalakal DA, Strates BS, Garvin KL, Novak JR, Fritz ED, Mollner TJ, McGuire MH. Demineralized bone matrix as a biological scaffold for bone repair. Tissue Eng 2001;7:161–77
  • Lazard ZW, Heggeness MH, Hipp JA, Sonnet C, Fuentes AS, Nistal RP, Davis AR, Olabisi RM, West JL, Olmsted-Davis EA. Cell-based gene therapy for repair of critical size defects in the rat fibula. J Cell Biochem 2011;112:1563–71
  • Tsuda Y, Hattori H, Tanaka Y, Ishihara M, Kishimoto S, Amako M, Arino H, Nemoto K. Ultraviolet light-irradiated photocrosslinkable chitosan hydrogel to prevent bone formation in both rat skull and fibula bone defects. J Tissue Eng Regen Med 2013;7:720–8
  • Sarban S, Senkoylu A, Isikan UE, Korkusuz P, Korkusuz F. Can rhBMP-2 containing collagen sponges enhance bone repair in ovariectomized rats? A preliminary study. Clin Orthop Related Res 2009;467:3113–20
  • Xu W, Ganz C, Weber U, Adam M, Holzhuter G, Wolter D, Frerich B, Vollmar B, Gerber T. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model. Int J Nanomed 2011;6:1543–52
  • Tovar N, Jimbo R, Gangolli R, Witek L, Lorenzoni F, Marin C, Manne L, Perez-Troisi L, Baldassarri M, Coelho PG. Modification of xenogeneic graft materials for improved release of P-15 peptides in a calvarium defect model. J Craniofac Surg 2014;25:70–6
  • Li G, Wang X, Cao J, Ju Z, Ma D, Liu Y, Zhang J. Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits. Br J Oral Maxillofac Surg 2014;52:134–9
  • Lin CY, Chang YH, Li KC, Lu CH, Sung LY, Yeh CL, Lin KJ, Huang SF, Yen TC, Hu YC. The use of ASCs engineered to express BMP2 or TGF-beta3 within scaffold constructs to promote calvarial bone repair. Biomaterials 2013;34:9401–12
  • Bigham AS, Dehghani SN, Shafiei Z, Torabi Nezhad S. Xenogenic demineralized bone matrix and fresh autogenous cortical bone effects on experimental bone healing: radiological, histopathological and biomechanical evaluation. J Orthop Traumatol 2008;9:73–80
  • Shafiei Z, Bigham AS, Dehghani SN, Nezhad ST. Fresh cortical autograft versus fresh cortical allograft effects on experimental bone healing in rabbits: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank 2009;10:19–26
  • Dehghani SN, Bigham AS, Torabi Nezhad S, Shafiei Z. Effect of bovine fetal growth plate as a new xenograft in experimental bone defect healing: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank 2008;9:91–9
  • Oryan A, Meimandi Parizi A, Shafiei-Sarvestani Z, Bigham AS. Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell Tissue Bank 2012;13:639–51
  • Shafiei-Sarvestani Z, Oryan A, Bigham AS, Meimandi-Parizi A. The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: radiological, biomechanical, macroscopic and histopathologic evaluation. IntJ Surg (Lond, Engl) 2012;10:96–101
  • Parizi AM, Oryan A, Shafiei-Sarvestani Z, Bigham AS. Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci Mater Med 2012;23:473–83
  • Bigham-Sadegh A, Karimi I, Shadkhast M, Mahdavi MH. Demineralized calf foetal growth plate effects on experimental bone healing in rabbit model. Veterinarski Archiv 2013;83: 525–36
  • Zheng H, Bai Y, Shih MS, Hoffmann C, Peters F, Waldner C, Hubner WD. Effect of a beta-TCP collagen composite bone substitute on healing of drilled bone voids in the distal femoral condyle of rabbits. J Biomed Mater Res B Appl Biomater 2014;102:376–83
  • Trejo CG, Lozano D, Manzano M, Doadrio JC, Salinas AJ, Dapia S, Gomez-Barrena E, Vallet-Regi M, Garcia-Honduvilla N, Bujan J, Esbrit P. The osteoinductive properties of mesoporous silicate coated with osteostatin in a rabbit femur cavity defect model. Biomaterials 2010;31:8564–73
  • Duan Z, Zheng Q, Guo X, Li C, Wu B, Wu W. Repair of rabbit femoral defects with a novel BMP2-derived oligopeptide P24. J Huazhong Univ Sci Technol Med Sci 2008;28:426–30
  • Zellin G, Linde A. Treatment of segmental defects in long bones using osteopromotive membranes and recombinant human bone morphogenetic protein-2: an experimental study in rabbits. Scand J Plast Reconstr Surg Hand Surg 1997;31:97–104
  • Komaki H, Tanaka T, Chazono M, Kikuchi T. Repair of segmental bone defects in rabbit tibiae using a complex of β-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials 2006;27:5118–26
  • Matos MA, Araujo FP, Paixao FB. Histomorphometric evaluation of bone healing in rabbit fibular osteotomy model without fixation. J Orthop Surg Res 2008;3:1–5
  • Bostrom M, Lane JM, Tomin E, Browne M, Berberian W, Turek T, Smith J, Wozney J, Schildhauer T. Use of bone morphogenetic protein-2 in the rabbit ulnar nonunion model. Clin Orthop Related Res 1996;327:272–82
  • Bouxsein M, Turek T, Blake C, Dā D, Li X, Stevens M, Seeherman H, Wozney J. Recombinant human bone morphogenetic protein-2 accelerates healing in a rabbit ulnar osteotomy model. J Bone Joint Surg 2001;83:1219–30
  • Kokubo S, Fujimoto R, Yokota S, Fukushima S, Nozaki K, Takahashi K, Miyata K. Bone regeneration by recombinant human bone morphogenetic protein-2 and a novel biodegradable carrier in a rabbit ulnar defect model. Biomaterials 2003;24:1643–51
  • Arias JI, Gonzalez A, Fernandez MS, Gonzalez C, Saez D, Arias JL. Eggshell membrane as a biodegradable bone regeneration inhibitor. J Tissue Eng Regen Med 2008;2:228–35
  • Sato K, Urist MR. Induced regeneration of calvaria by bone morphogenetic protein (BMP) in dogs. Clin Orthop Related Res 1985;197:301–11
  • Yun IS, Mun HY, Hong JW, Cho EJ, Woo DG, Kim HS, Kim YO, Park BY, Rah DK. Transport disc distraction osteogenesis for the reconstruction of a calvarial defect. J Craniofac Surg 2011;22:690–3
  • Tanuma Y, Matsui K, Kawai T, Matsui A, Suzuki O, Kamakura S, Echigo S. Comparison of bone regeneration between octacalcium phosphate/collagen composite and beta-tricalcium phosphate in canine calvarial defect. Oral Surg Oral Med Oral Pathol Oral Radiol 2013;115:9–17
  • Bigham-Sadegh A, Mirshokraei P, Karimi I, Oryan A, Aparviz A, Shafiei-Sarvestani Z. Effects of adipose tissue stem cell concurrent with greater omentum on experimental long-bone healing in dog. Connect Tissue Res 2012;53:334–42
  • Saifzadeh S, Pourreza B, Hobbenaghi R, Naghadeh BD, Kazemi S. Autogenous greater omentum, as a free nonvascularized graft, enhances bone healing: an experimental nonunion model. J Invest Surg 2009;22:129–37
  • Yuan H, Li Y, De Bruijn J, De Groot K, Zhang X. Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials 2000;21:1283–90
  • Guillemin G, Patat JL, Fournie J, Chetail M. The use of coral as a bone graft substitute. J Biomed Mater Res 1987;21:557–67
  • Choi S, Liu IL, Yamamoto K, Honnami M, Sakai T, Ohba S, Echigo R, Suzuki S, Nishimura R, Chung UI, Sasaki N, Mochizuki M. Implantation of tetrapod-shaped granular artificial bones or beta-tricalcium phosphate granules in a canine large bone-defect model. J Vet Med Sci 2014; 76:229–35
  • Luangphakdy V, Walker E, Shinohara K, Pan H, Hefferan T, Bauer TW, Stockdale L, Saini S, Dadsetan M, Runge MB, Vasanji A, Griffith L, Yaszemski M, Muschler GF. Evaluation of osteoconductive scaffolds in the canine femoral multi-defect model. Tissue Eng Part A 2013;19:634–48
  • Cook SD, Baffes GC, Wolfe MW, SAMPATH TK, Rueger DC. Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop Related Res 1994;301:302–12
  • Zhu L, Liu W, Cui L, Cao Y. Tissue-engineered bone repair of goat-femur defects with osteogenically induced bone marrow stromal cells. Tissue Eng 2006;12:423–33
  • Dai K, Xu X, Tang T, Zhu Z, Yu C, Lou J, Zhang X. Repairing of goat tibial bone defects with BMP-2 gene-modified tissue-engineered bone. Calcif Tissue Int 2005;77:55–61
  • Li X, Feng Q, Liu X, Dong W, Cui F. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials 2006;27:1917–23
  • Berner A, Woodruff MA, Lam CX, Arafat MT, Saifzadeh S, Steck R, Ren J, Nerlich M, Ekaputra AK, Gibson I, Hutmacher DW. Effects of scaffold architecture on cranial bone healing. Int J Oral Maxillofac Surg 2014;43:506–13
  • Gerhart TN, Kirker-Head C, Kriz M, Holtrop M, Hennig G, Hipp J, Schelling S, Wang E. Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin Orthop Related Res 1993;293:317–26
  • Cipitria A, Reichert JC, Epari DR, Saifzadeh S, Berner A, Schell H, Mehta M, Schuetz MA, Duda GN, Hutmacher DW. Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials 2013;34:9960–8
  • Berner A, Reichert JC, Woodruff MA, Saifzadeh S, Morris AJ, Epari DR, Nerlich M, Schuetz MA, Hutmacher DW. Autologous vs. allogenic mesenchymal progenitor cells for the reconstruction of critical sized segmental tibial bone defects in aged sheep. Acta Biomater 2013;9:7874–84
  • Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Related Res 1986;205:299–308
  • Ham AW. A histological study of the early phases of bone repair. J Bone Joint Surg 1930;12:827–44
  • Li M, Amizuka N, Oda K, Tokunaga K, Ito T, Takeuchi K, Takagi R, Maeda T. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis. Microsc Res Tech 2004;64:330–42
  • Fujii T, Ueno T, Kagawa T, Sakata Y, Sugahara T. Comparison of bone formation in grafted periosteum harvested from tibia and calvaria. Microsc Res Tech 2006;69:580–4
  • Alberius P, Johnell O. Repair of intra-membranous bone fractures and defects in rats. Immunolocalization of bone and cartilage proteins and proteoglycans. J Cranio-maxillofac Surg 1991;19:15–20
  • Herold HZ, Hurvitz A, Tadmor A. The effect of growth hormone on the healing of experimental bone defects. Acta Orthop 1971;42:377–84
  • Bolander ME, Galian G. The use of demineralize bone matrix in the repair of segmental defect. J Bone Joint Surg 1983;68A:1264–74
  • Cook SD, Baffes GC, Wolfe MW, Kuber Sampath T, Rueger DC, Whitecloud Iii TS. The effect of recombinant human osteogenic protein-1 on healing of large segmental bone defects. J Bone Joint SurgA Am Vol 1994;76:827–38
  • Geiger F, Bertram H, Berger I, Lorenz H, Wall O, Eckhardt C, Simank HG, Richter W. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res 2005;20:2028–35
  • Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg 2002;84:716–20
  • McCarthy RE, Peek RD, Morrissy RT, Hough AJ. Allograft bone in spinal fusion for paralytic scoliosis. J Bone Joint Surg Am Vol 1986;68:370–5
  • Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Related Res 1996;329:300–9
  • Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res 2010;132:15–30
  • Cordeiro PG, Disa JJ, Hidalgo DA, Hu QY. Reconstruction of the mandible with osseous free flaps: a 10-year experience with 150 consecutive patients. Plast Reconstr Surg 1999;104:1314–20
  • Chung YG, Bishop AT, Giessler GA, Suzuki O, Platt JL, Pelzer M, Friedrich PF, Kremer T. Surgical angiogenesis: a new approach to maintain osseous viability in xenotransplantation. Xenotransplantation 2010;17:38–47
  • Valentini V, Gennaro P, Torroni A, Longo G, Aboh IV, Cassoni A, Battisti A, Anelli A. Scapula free flap for complex maxillofacial reconstruction. J Craniofac Surg 2009;20:1125–31
  • Dowthwaite SA, Theurer J, Belzile M, Fung K, Franklin J, Nichols A, Yoo J. Comparison of fibular and scapular osseous free flaps for oromandibular reconstruction: a patient-centered approach to flap selection. JAMA Otolaryngol Head Neck Surg 2013;139:285–92
  • Yilmaz M, Vayvada H, Menderes A, Demirdover C, Kizilkaya A. A comparison of vascularized fibular flap and iliac crest flap for mandibular reconstruction. J Craniofac Surg 2008;19:227–34
  • Buyukdereli G, Guney IB, Ozerdem G, Kesiktas E. Evaluation of vascularized graft reconstruction of the mandible with Tc-99m MDP bone scintigraphy. Ann Nucl Med 2006;20:89–93
  • Ashay AK, Di Cesare PE. Osteoinductive agents: basic science and clinical applications. Am J Orthop 1995;24:752–61
  • Urist MF, Sato K, Brownell AG. Human bone morphogenetic protein. Proc Soc Exp Biol Med 1983;173:194–9
  • Urist MR, Mikulski AJ, Lietz A. Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci USA 1979;76:1828–32
  • Beresford JN. Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop 1989;240:270–80
  • Triffitt JT. The stem cell of the osteoblast. In: Bilezikian JP, Raisz LG, Rodan GA, eds. Principles of bone biology. San Diego: Academic Press; 1996:39–50
  • Caplan AI, Bruder SP. Cell and molecular engineering of bone regeneration. In: Lanza RP, Langer R, Chick L, editors. Principles of tissue engineering. Georgetown, TX: R. G. Landes and Academic Press; 1997:603–19
  • Berggren A, Weiland AL, Ostrup LT, Dorfinan H. The effects of storage media and perfusion on osteoblast and osteocyte survival in free composite bone grafts. J Microsurg 1981;2:273–82
  • Graham CE. Further experience with the bone grafting of fractures using xenografts mixed with autologous red marrow. J Bone Joint Surg 1982;64B:123–8
  • Ashton BA, Allen TD, Howlett CR, Eaglesom CC, Hattori A, Owen M. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop Related Res 1980;151:294–307
  • Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920–6
  • Hench LL, Polak JM. Third-generation biomedical materials. Science 2002;295:1014–17
  • Kretlow JD, Mikos AG. Review: mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng 2007;13:927–38
  • Zijderveld SA, Zerbo IR, van den Bergh JP, Schulten EA, ten Bruggenkate CM. Maxillary sinus floor augmentation using a beta-tricalcium phosphate (Cerasorb) alone compared to autogenous bone grafts. Int J Oral Maxillofac Implants 2005;20:432–40
  • Stevens MM. Biomaterials for bone tissue engineering. Mater Today 2008;11:18–25
  • Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng 2001;7:23–33
  • Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, Zhang M, Yao K. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 2002;23:3227–34
  • Liu X, Holzwarth JM, Ma PX. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol Biosci 2012;12:911–19
  • Kolambkar YM, Peister A, Ekaputra AK, Hutmacher DW, Guldberg RE. Colonization and osteogenic differentiation of different stem cell sources on electrospun nanofiber meshes. Tissue Eng Part A 2010;16:3219–30
  • Duarte ARC, Mano JoF, Reis RL. Perspectives on: supercritical fluid technology for 3d tissue engineering scaffold applications. J Bioactive Compat Polym 2009;24:385–400
  • Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 2002;23:4739–51
  • Linhart W, Peters F, Lehmann W, Schwarz K, Schilling AF, Amling M, Rueger JM, Epple M. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res 2001;54:162–71
  • Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, Cui F, Watari F. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials 2005;26:7564–71
  • Pereira MM, Jones JR, Hench LL. Bioactive glass and hybrid scaffolds prepared by sol–gel method for bone tissue engineering. Adv Appl Ceram 2005;104:35–42
  • Devescovi V, Leonardi E, Ciapetti G, Cenni E. Growth factors in bone repair. La Chirurgia Degli Organi Di Movimento 2008;92:161–8
  • Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGFβ and BMP. Bone 1996;19:S1–12
  • Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004;22:233–41
  • Urist MR, Mikulski A, Lietze A. Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad of Sci USA 1979;76:1828–32
  • Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 2009;30:3551–9
  • Hu Y, Zhang C, Zhang S, Xiong Z, Xu J. Development of a porous poly(L-lactic acid)/hydroxyapatite/collagen scaffold as a BMP delivery system and its use in healing canine segmental bone defect. J Biomed Mater Res Part A 2003;67:591–8
  • Fu YC, Nie H, Ho ML, Wang CK, Wang CH. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol Bioeng 2008;99:996–1006
  • Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone biology and clinical applications. J Bone Joint Surg 2002;84:1032–44
  • Ehnert S, Zhao J, Pscherer S, Freude T, Dooley S, Kolk A, Stickle U, Nussler AK, Hube R. Transforming growth factor beta1 inhibits bone morphogenic protein (BMP)-2 and BMP-7 signaling via upregulation of Ski-related novel protein N (SnoN): possible mechanism for the failure of BMP therapy? BMC Med 2012;10:101
  • Crandall DG, Revella J, Patterson J, Huish E, Chang M, McLemore R. Transforaminal lumbar interbody fusion with rhBMP-2 in spinal deformity, spondylolisthesis, and degenerative disease – part 2: BMP dosage-related complications and long-term outcomes in 509 patients. Spine 2013;38:1137–45
  • Fu R, Selph S, McDonagh M, Peterson K, Tiwari A, Chou R, Helfand M. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med 2013;158:890–902
  • Moatz B, Tortolani PJ. Transforaminal lumbar interbody fusion and posterior lumbar interbody fusion utilizing BMP-2 in treatment of degenerative spondylolisthesis: neither safe nor cost effective. Surg Neurol Int 2013;22:S67–73
  • Bydon M, Macki M, Abt NB, Witham TF, Wolinsky JP, Gokaslan ZL, Bydon A, Sciubba DM. The cost-effectiveness of interbody fusions versus posterolateral fusions in 137 patients with lumbar spondylolisthesis. Spine J 2015;15:492–8
  • Carreira AC, Lojudice FH, Halcsik E, Navarro RD, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins facts, challenges, and future perspectives. J Dental Res 2014;93:335–45
  • Arrabal PM, Visser R, Santos-Ruiz L, Becerra J, Cifuentes M. Osteogenic molecules for clinical applications: improving the BMP-collagen system. Biol Res 2013;46:421–9
  • Rodgers SD, Marascalchi BJ, Grobelny BT, Smith ML, Samadani U. Revision surgery after interbody fusion with rhBMP-2: a cautionary tale for spine surgeons. J Neurosurg Spine 2013;18:582–7
  • Woo EJ. Adverse events after recombinant human BMP2 in nonspinal orthopaedic procedures. Clin Orthop Related Res 2013;471:1707–11
  • Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG. In vitro degradation of a poly (propylene fumarate)-based composite material. Biomaterials 1996;17:2127–30
  • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23:47–55
  • Temenoff JS, Lu L, Mikos AG. Bone tissue engineering using synthetic biodegradable polymer scaffolds. In: Davies JE, ed. Bone engineering. Toronto: EM Squared; 2000:454
  • Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996;17:137–46
  • Whang K, Thomas CH, Healy KE, Nuber G. A novel method to fabricate bioabsorbable scaffolds. Polymer 1995;36:837–42
  • Timmer MD, Shin H, Horch RA, Ambrose CG, Mikos AG. In vitro cytotoxicity of injectable and biodegradable poly (propylene fumarate)-based networks: unreacted macromers, cross-linked networks, and degradation products. Biomacromolecules 2003;4:1026–33
  • Thomson RC, Wake MC, Yaszemski MJ, Mikos AG. Biodegradable polymer scaffolds to regenerate organs. Adv Polym Sci 1995; 122:245–74
  • Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 1996;17:175–85
  • Oryan A, Alidadi S, Moshiri A. Current concerns regarding healing of bone defects. Hard Tissue 2013;2:1–12
  • Tuominen T, Jims T, Tuukkanen J, Marttinen A, Lindholm TS, Jalovaara P. Bovine bone implant with bovine bone morphogenetic protein in healing a canine ulnar defect. Int Orthop 2001;25:5–8
  • Vos D, Verhofstad M, Hanson B, van der Graaf Y, van der Werken C. Clinical outcome of implant removal after fracture healing. Design of a prospective multicentre clinical cohort study. BMC Musculoskelet Disord 2012;13:147
  • Claes LE, Cunningham JL. Monitoring the mechanical properties of healing bone. Clin Orthop Related Res 2009;467:1964–71
  • Bigham AS, Dehghani SN, Shafiei Z, Nezhad ST. Experimental bone defect healing with xenogenic demineralized bone matrix and bovine fetal growth plate as a new xenograft: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank 2009;10:33–41
  • Bigham AS, Shadkhast M, Dehghani SN. Autogenous bone marrow concurrent with static magnetic field effects on bone-defect healing: radiological and histological study. Comp Clin Pathol 2009;18:163–8
  • Verhaar HJJ, Lems WF. PTH analogues and osteoporotic fractures. Expert Opin Biol Ther 2010;10:1387–94
  • Morris MD, Mandair GS. Raman assessment of bone quality. Clin Orthop Related Res 2011;469:2160–9
  • Parizi AM, Oryan A, Shafiei-Sarvestani Z, Bigham AS. Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci Mater Med 2012;23:473–83
  • Bigham-Sadegh A, Shadkhast M, Khalegi M-R. Demineralized calf foetal growth plate effects on experimental bone healing in rabbit model. Veterinarski Arhiv 2013;83:525–36
  • Parizi AM, Oryan A, Shafiei-Sarvestani Z, Bigham-Sadegh A. Effectiveness of synthetic hydroxyapatite versus Persian Gulf coral in an animal model of long bone defect reconstruction. J Orthop Traumatol 2013;14:259–68
  • Oryan A, Moshiri A. A long term study on the role of exogenous human recombinant basic fibroblast growth factor on the superficial digital flexor tendon healing in rabbits. J Musculoskelet Neuronal Interact 2012;11:185–95
  • Axelrad TW, Einhorn TA. Use of clinical assessment tools in the evaluation of fracture healing. Injury 2011;42:301–5
  • Vannabouathong C, Sprague S, Bhandari M. Guidelines for fracture healing assessments in clinical trials. Part I: definitions and endpoint committees. Injury 2011;42:314–16
  • Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 1989;4:3–11
  • Martin-Badosa E, Amblard D, Nuzzo S, Elmoutaouakkil A, Vico L, Peyrin F. Excised bone structures in mice: imaging at three-dimensional synchrotron radiation micro CT. Radiology 2003;229:921–8
  • Hildebrand T, Rüegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 1997;185:67–75
  • Laib A, Hildebrand T, Häuselmann HJ, Rüegsegger P. Ridge number density: a new parameter for in vivo bone structure analysis. Bone 1997;21:541–6
  • Hildebrand TOR, Rüegsegger P. Quantification of bone microarchitecture with the structure model index. Comp Methods Biomech Biomed Eng 1997;1:15–23
  • Fajardo RJ, Cory E, Patel ND, Nazarian A, Laib A, Manoharan RK, Schmitz JE, DeSilva JM, MacLatchy LM, Snyder BD. Specimen size and porosity can introduce error into microCT-based tissue mineral density measurements. Bone 2009;44:176–84
  • An YH, Martin KL. Handbook of histology methods for bone and cartilage. Totowa, NJ: Humana Press Inc; 2003
  • Yu Y, Bliss JP, Bruce WJ, Walsh WR. Bone morphogenetic proteins and Smad expression in ovine tendon-bone healing. Arthroscopy 2007;23:205–10
  • Bostrom MP, Lane JM, Berberian WS, Missri AA, Tomin E, Weiland A, Doty SB, Glaser D, Rosen VM. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res 1995;13:357–67
  • Li J, Fan L, Yu Z, Dang X, Wang K. The effect of deferoxamine on angiogenesis and bone repair in steroid-induced osteonecrosis of rabbit femoral heads. Exp Biol Med (Maywood) 2015;240:273–80
  • Schiller JR, Moore DC, Ehrlich MG. Increased lengthening rate decreases expression of fibroblast growth factor 2, platelet-derived growth factor, vascular endothelial growth factor, and CD31 in a rat model of distraction osteogenesis. J Pediatr Orthop 2007;27:961–8
  • Oryan A, Moshiri A, Meimandiparizi A-H. Effects of sodium-hyaluronate and glucosamine-chondroitin sulfate on remodeling stage of tenotomized superficial digital flexor tendon in rabbits: a clinical, histopathological, ultrastructural, and biomechanical study. Connect Tissue Res 2011;52:329–39
  • Reinholt FP. Healing of long-term frozen orthotopic bone allografts is not affected by MHC differences between donor and recipient. Clin Orthop Related Res 2011;469:1479–86
  • Korkmaz M, Ozturk H, Bulut O, Unsaldi T, Kaloglu C. The effect of definitive continuous distraction employed with the Ilizarov type external fixation system on fracture healing: an experimental rabbit model. Acta Orthop Traumatol Turc 2004;39:247–57
  • Saifzadeh S, Hobbenaghi R, Hodi S. Elastic cartilage grafting in canine radial fracture. Iran J Vet Res 2006;7:1–7
  • Jansen JA. Histological analysis of bone-implant interface. In: An YH, Martin KL, eds. Handbook of histology methods for bone and cartilage. Totowa: Humana Press Inc.; 2003:353–61
  • Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 1987;6:595–610
  • Compston J. Bone histomorphometry. In: Arnett TR, Henderson B, eds. Methods in bone biology. 1st ed. London, England: Chapman & Hall; 1998:177–99
  • Liebschner MAK. Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 2004;25:1697–714
  • Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone 1993;14:595–608
  • Mow VC, Hayes WC. Basic orthopaedic biomechanics. New York: Raven Press; 1997
  • Kumbar SG, Toti US, Deng M, James R, Laurencin CT, Aravamudhan A, Harmon M, Ramos DM. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering. Biomed Mater (Bristol, England) 2011;6:065005
  • Funk JR, Hale JE, Carmines D, Gooch HL, Hurwitz SR. Biomechanical evaluation of early fracture healing in normal and diabetic rats. J Orthop Res 2000;18:126–32
  • Aydin A, Memisoglu K, Cengiz A, Atmaca H, Muezzinoglu B, Muezzinoglu US. Effects of botulinum toxin A on fracture healing in rats: an experimental study. J Orthop Sci 2012;17:796–801
  • Hallbauer DK, Wagner H, Cook NGW. Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int J Rock Mech Mining Sci Geomech Abst 1973;10:713–26
  • Athanasiou KA, Zhu C, Lanctot DR, Agrawal CM, Wang X. Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng 2000;6:361–81
  • White AA III, Panjabi MM, Southwick WO. The four biomechanical stages of fracture repair. J Bone Joint Surg Am Vol 1977;59:188–92
  • Ryan PJ, Fogelman I. The bone scan: where are we now? Semin Nucl Med 1995;25:76–91
  • Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2012;40:363–408
  • O'Keefe RJ, Mao J. Bone tissue engineering and regeneration: from discovery to the clinician overview. Tissue Eng B Rev 2011;17:389–92
  • Dorozhkin SV. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 2010;6:715–34
  • Lin K, Wu C, Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater 2014;10:4071–102
  • Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 2004;25:987–94
  • Chan CK, Kumar TSS, Liao S, Murugan R, Ngiam M, Ramakrishnan S. Biomimetic nanocomposites for bone graft applications. Nanomedicine (London) 2006;1:177–88
  • Chiara G, Letizia F, Lorenzo F, Edoardo S, Diego S, Stefano S, Eriberto B, Barbara Z. Nanostructured biomaterials for tissue engineered bone tissue reconstruction. Int J Mol Sci 2012;13:737–57
  • McMahon RE, Wang L, Skoracki R, Mathur AB. Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater 2013;101:387–97
  • Alves Cardoso D, Jansen JA, G Leeuwenburgh SC. Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J Biomed Mater Res B Appl Biomater 2012;100:2316–26
  • Kim HN, Jiao A, Hwang NS, Kim MS, Kang DH, Kim D-H, Suh K-Y. Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2013;65:536–58
  • Martinez E, Engel E, Planell JA, Samitier J. Effects of artificial micro-and nano-structured surfaces on cell behaviour. Ann Anat 2009;191:126–35
  • Smith IO, Liu XH, Smith LA, Ma PX. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009;1:226–36
  • Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 2013;38:1487–503
  • Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 2011;32:9622–9
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003;55:329–47
  • Peran M, Garcia MA, Lopez-Ruiz E, Bustamante M, Jimnez G, Madeddu R, Marchal JA. Functionalized nanostructures with application in regenerative medicine. Int J Mol Sci 2012;13:3847–86
  • Giannoudis P, Tzioupis C, Almalki T, Buckley R. Fracture healing in osteoporotic fractures: is it really different?: a basic science perspective. Injury 2007;38:S90–9
  • Hankenson KD, Zimmerman G, Marcucio R. Biological perspectives of delayed fracture healing. Injury 2014;45:S8–15
  • Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury 2011;42:556–61
  • Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Related Res 1998;355:S7–21
  • Hadjiargyrou M, O'Keefe RJ. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease. J Bone Miner Res 2014;29:2307–22
  • Doblare M, Garcia JM, Gomez MJ. Modelling bone tissue fracture and healing: a review. Eng Fract Mech 2004;71:1809–40
  • Carano RAD, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today 2003;8:980–9
  • Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury 2005;36:1392–404
  • Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 2008;15:100–14
  • Lee C-W, Shin S-J. Prognostic factors for unstable proximal humeral fractures treated with locking-plate fixation. J Shoulder Elbow Surg 2009;18:83–8
  • Janicki P, Schmidmaier G. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury 2011;42:S77–81
  • Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 2006;11:43–56
  • Schmidmaier G, Wildemann B, Heeger J, Gäbelein T, Flyvbjerg A, Bail HJ, Raschke M. Improvement of fracture healing by systemic administration of growth hormone and local application of insulin-like growth factor-1 and transforming growth factor-b1. Bone 2002;31:165–72
  • Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J 2001;10:S96–101
  • Lauzon MA, Bergeron E, Marcos B, Faucheux N. Bone repair: new developments in growth factor delivery systems and their mathematical modeling. J Control Release 2012;162:502–20
  • Keramaris NC, Calori GM, Nikolaou VS, Schemitsch EH, Giannoudis PV. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 2008;39:S45–57
  • Salgado AnJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004;4:743–65
  • Healy KE, Guldberg RE. Bone tissue engineering. J Musculoskelet Neuronal Interact 2007;7:328–30
  • Elisseeff J, Ferran A, Hwang S, Varghese S, Zhang Z. The role of biomaterials in stem cell differentiation: applications in the musculoskeletal system. Stem Cells Dev 2006;15:295–303
  • Lutolf MP. Integration column: artificial ECM: expanding the cell biology toolbox in 3D. Integr Biol (Camb) 2009;1:235–41
  • Rose FRAJ, Oreffo ROC. Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun 2002;292:1–7
  • Bahney CS, Hu DP, Taylor AJ, Ferro F, Britz HM, Hallgrimsson B, Johnstone B, Miclau T, Marcucio RS. Stem cell-derived endochondral cartilage stimulates bone healing by tissue transformation. J Bone Miner Res 2014;29:1269–82
  • Scotti C, Piccinini E, Takizawa H, Todorov A, Bourgine P, Papadimitropoulos A, Barbero A, Manz MG, Martin I. Engineering of a functional bone organ through endochondral ossification. Proc Natl Acad Sci USA 2013;110:3997–4002
  • Scotti C, Tonnarelli B, Papadimitropoulos A, Scherberich A, Schaeren S, Schauerte A, Lopez-Rios J, Zeller R, Barbero A, Martin I. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc Natl Acad Sci USA 2010;107:7251–6
  • Sheehy EJ, Vinardell T, Buckley CT, Kelly DJ. Engineering osteochondral constructs through spatial regulation of endochondral ossification. Acta Biomater 2013;9:5484–92
  • Sheehy EJ, Vinardell T, Toner ME, Buckley CT, Kelly DJ. Altering the architecture of tissue engineered hypertrophic cartilaginous grafts facilitates vascularisation and accelerates mineralisation. PLoS One 2014;9:e90716
  • Nishitani K, Schwarz EM. Regenerative medicine: cartilage transplants hold promise for challenging bone defects. Nat Rev Rheumatol 2014;10:129–30
  • Zhang X, Awad HA, O'Keefe RJ, Guldberg RE, Schwarz EM. A perspective: engineering periosteum for structural bone graft healing. Clin Orthop Relat Res 2008;466:1777–87
  • Webb JCJ, Tricker J. Bone biology – a review of fracture healing. J Curr Orthop 2000;14:457–63

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.