29
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Enamel Cell Biology Towards a Comprehensive Biochemical Understanding

Pages 17-32 | Accepted 11 Nov 1997, Published online: 07 Jul 2009

References

  • Kahn P. From genome to proteome: Looking al a cell's proteins. Science 1995; 270: 369–370
  • Celis J. E., Gromov P., Ostergaard M., Madsen P., Honore B., Dejgaard K., Olsen E., Vorum H., Kristensen D. B., Gromova I., Haunso A., Van Damme J., Puype M., Vandekerckhove J., Rasmussen H. H. Human 2-D PAGE databases for proteome analysis in health and disease. FEBS Lett. 1996; 398: 129–134, http://biobase.dk/cgi-bin/celis
  • Revel J. P. Ameloblast biology. A personal assessment. J. Dent. Res. 1979; 58(B)742–744
  • Smith C. E. Slereological analysis of organelle distribution within rat incisor enamel organ at successive stages of amelogenesis. INSERM 1984; 125: 273–282
  • Warshawsky H. Formation of enamel and dentin: a critical review. CRC Crit. Rev. Anal. Cell Biol. 1988; 1: 425–460
  • Boyde A. Enamel. Handbook of Microscopic Anatomy, A. Oksche, L. Vollrath. Springer-Verlag, Berlin 1989; vol 6: 309–473
  • Nanci A., Smith C. E. Development and calcification of enamel. Calcification in biological systems, E. Bonucci. CRC Press, Boca Raton, Fl. 1992; 313–343
  • Robinson C., Briggs H. D., Atkinson P. J., Weatherall J. A. Matrix and mineral changes in developing enamel. J. Dent. Res. 1979; 58(B)871–880
  • Deutsch D., Catalano-Sherman J., Dafni L., David S., Palmon A. Enamel matrix proteins and ameloblast biology. Conn. Tissue Res. 1995; 32: 97–107
  • Simmer J. P., Fincham A. G. Molecular mechanisms of dental enamel formation. Crit. Rev. Oral Biol. Med. 1995; 6: 84–108
  • Smith C. E., Nanci A. Protein dynamics of amelogenesis. Anat. Rec. 1996; 245: 186–207
  • Hubbard M. J. Calbindin28kDa and calmodulin are hyperabundant in rat dental enamel cells: Identification of the protein phosphatase calcineurin as a principal calmodulin target and of a secretion-related role for calbindin28kDa. Eur. J. Biochem. 1995; 230: 68–79
  • Hubbard M. J. Abundant calcium homeostasis machinery in rat dental enamel cells. Up-regulation of calcium store proteins during enamel hypermineralization implicates the endoplasmic reticulum in calcium transcytosis. Eur. J. Biochem. 1996; 239: 611–623
  • Hubbard M. J., McHugh N. J. Mitochondrial ATP synthase F1β-subunit is a calcium-binding protein. FEBS Letts. 1996; 391: 323–329
  • Hubbard M. J. Organ culture of murine tooth germs exposed to alloimmune IgG. J. Dent. Res. 1981; 60: 1590–1600
  • Kardos T. B., Hubbard M. J. Rapid dissection of rodent molar tooth germs. Lab. Animals 1981; 15: 371–373
  • Kukita A., Harada H., Kukita T., Inai T., Matsuhashi S., Kurisu K. Primary and secondary culture of rat ameloblasts in serum-free medium. Calcif Tissue Int. 1992; 51: 393–398
  • Smith C. E., Nanci A. A method for sampling the stages of amelogenesis on mandibular rat incisors using the molars as a reference for dissection. Anat. Rec. 1989; 225: 257–266
  • Shevchenko A., Jensen O. N., Podteleinikov A. V., Sagliocco F., Wilm M., Vorm O., Mortensen P., Schevchenko A., Boucherie H., Mann M. Linking genome and proteome by mass spectrometry. Large-scale identification of yeast proteins from two dimensional gels. Proc. Natl. Acad. Sci. USA 1996; 93: 14440–11415
  • Couwenhoven R. I., Davis C., Snead M. L. Mouse ameloblasts do not transcribe the albumin gene. Calcif. Tissue Intl. 1989; 45: 367–371
  • Demmer J., Zhou C. M., Hubbard M. J. Molecular cloning of ERp29, a novel and widely expressed resident of the endoplasmic reticulum. FEBS Letts. 1997; 402: 145–150
  • Matsuki Y., Nakashima M., Amizuka N., Warshawsky H., Goltzman D., Yamada K. M., Yamada Y. A compilation of partial sequences of randomly selected cDNA clones from the rat incisor. J. Dent. Res. 1995; 74: 307–312
  • Bonass W. A., Kirkham J., Shore R. C., Brookes S. J., Godfrey C. L., Robinson C. Identification of rat enamel organ RNA transcripts using differential display. Conn. Tissue Res. 1998; 38: 249–256
  • Hubbard M. J., McHugh N. J. Calbindin28kDa and calbindin30kDa (calretinin) are substantially localised in the particulate fraction of rat brain. FEBS Letts. 1995; 374: 333–337
  • Bawden J. W. Calcium transport during mineralization. Anat. Rec. 1989; 224: 226–233
  • Bronner F. Transcellular calcium transport. Intracellular calcium regulation, F. Bronner. Alan R. Liss, New York 1990; 415–437
  • Feher J. J., Fullmer C. S., Wasserman R. H. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am. J. Physiol. 1992; 262: C517–C526
  • Takano Y. Enamel mineralization and the role of ameloblasts in calcium transport. Conn. Tissue Res. 1995; 33: 127–137
  • Wasserman R. H., Fullmer C. S. Vitamin D and intestinal calcium transport: Facts, speculations and hypotheses. J. Nutr. 1995; 125: 1971S–1979S
  • Macer D. R. J., Koch G. L. E. Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. J. Cell Sci. 1988; 91: 61–70
  • Pozzan T., Rizzuto R., Volpe P., Meldolesi J. Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 1994; 74: 595–636
  • Berridge M. J. Inositol trisphosphate and calcium signalling. Nature 1993; 361: 315–325
  • Rubinoff M. J., Nellans H. N. Active calcium sequestration by intestinal microsomes. Stimulation by increased calcium load. J. Biol. Chem. 1985; 260: 7824–7828
  • Mayel-Afshar S., Lane S. M., Lawson D. E. M. Relationship between the levels of calbindin synthesis and calbindin mRNA in chick intestine. Quantitation of calbindin mRNA. J. Biol. Chem. 1988; 263: 4355–4361
  • Budd S. L., Nicholls D. G. Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurochem. 1996; 67: 2282–2291
  • Herrington J., Park Y. B., Babcock D. F., Hille B. Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron 1996; 16: 219–228
  • Takano Y. Histochemical aspects of calcium regulation by the enamel forming cells during matrix formation and maturation. Acta Anat. Nippon 1994; 69: 106–122
  • Takano Y., Matsuo S., Wakisaka S., Ichikawa H., Nishikawa S., Akai M. A histochemical demonstration of calcium in the maturation stage enamel organ of rat incisors. Arch. Histol. Cytol. 1988; 51: 241–248
  • Nanci A., Uchida T., Warshawsky H. The effects of vinblastine on the secretory ameloblasts. An ultrastructural, cytochemical and immunocytochemical study in the rat incisor. Anat. Rec. 1987; 219: 113–126
  • Uchida T., Warshawsky H. Zinc iodide-osmium tetroxide impregnation of the tubulo-vesicular system in Tomes' process of the rat incisor ameloblast. Anat. Rec. 1992; 232: 325–339
  • Mogami H., Nakano K., Tepikin A. V., Petersen O. H. Caz+ flow via tunnels in polarized cells. Recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell 1997; 88: 49–55
  • Heizmann C. W., Braun K. Changes in Ca2+ -binding proteins in human neurodegenerative disorders. Trends Neurosci. 1992; 15: 259–264
  • Tribe R. M., Borin M. L., Blaustein M. P. Functionally and spatially distinct Ca2+ stores are revealed in cultured vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA 1994; 91: 5908–5912
  • Pindborg J. J. Aetiology of developmental enamel defects not related to fluorosis. Int. Dent. J. 1982; 32: 123–134
  • Smith C. E., McKee M. D., Nanci A. Cyclic induction and rapid movement of sequential waves of new smooth-ended ameloblast modulation bands in rat incisors as visualized by polychrome fluorescent labeling and GBHA-staining of maturing enamel. Adv. Dent. Res 1987; 1: 162–175
  • Hansen M., Boitano S., Dirksen E. R., Sanderson M. J. A role for phospholipase C activity but not ryanodine receptors in the initiation and propagation of intercellular waves. J. Cell Sci. 1995; 108: 2583–2590
  • Stuart R. O., Sun A., Panichas M., Hebert S. C., Brenner B. M., Nigam S. K. Critical role for intracellular calcium in tight junction biogenesis. J. Cellular Physiol. 1994; 159: 423–433
  • Nanci A., Slavkin H. C., Smith C. E. Application of high resolution immunocytochemistry to the study of secretory, resorptive and degradative functions of ameloblasts. Adv. Dent. Res. 1987; 1: 148–161
  • Slavkin H. C., Bessem C., Bringas P., Zeichner-David M., Nanci A., Snead M. L. Sequential expression and differential function of multiple enamel proteins during fetal, neonatal and early postnatal stages of mouse molar organogenesis. Differentiation 1988; 37: 26–39
  • Snead M. L., Luo W., Lau E. C., Slavkin H. C. Spatial- and temporal-restricted pattern for amelogenin expression during mouse molar tooth organogenesis. Development 1988; 104: 77–85
  • Wurtz T., Lundmark C., Christersson C., Bawden J. W., Slaby I., Hammarstrom L. Expression of amelogenin mRNA sequences during development of rat molars. J. Bone Miner. Res. 1996; 11: 125–131
  • Evans J., Bringas P., Nakamura M., Nakamura E., Santos V., Slavkin H. C. Metabolic expression of intrinsic developmental programs for dentine and enamel biomineralization in serumless, chemically-defined, organotypic culture. Calcif. Tissue Intl. 1988; 42: 220–230
  • Sakakura Y., Fujiwara N., Nawa T. A simple, disposable and improved organ culture system for maintaining three-dimensional development of mouse embryonic molars in vitro. Cell. Devel. Biol. 1989; 25: 959–964
  • DenBesten P., Mathews C., Gao C., Li W. Primary culture and characterization of enamel organ epithelial cells. Conn. Tissue Res. 1998; 38: 3–8
  • Chen W. Y., Lu L., McDonald K., Osmond D. G., Smith C. E. Isolation of amelogenin-positive ameloblasts from rat mandibular incisor enamel organs by flow cytometry and fluorescence activated cell sorting. Conn. Tissue Res. 1998; 38: 9–15
  • Chen L. S., Couwenhoven R. I., Hsu D., Luo W., Snead M. L. Maintenance of amelogenin gene expression by transformed epithelial cells of mouse enamel organ. Archs. Oral Biol. 1992; 37: 771–778
  • Diekwisch T., Sasson D., Bringas P., Santos V., Slavkin H. C. Antisense inhibition of AMEL translation demonstrates supramolecular controls for enamel HAP crystal growth during embryonic mouse molar development. Development 1993; 117: 471–482
  • Lyngstadaas S. P., Risnes S., Sproat B. S., Thrane P. S., Prydz H. P. A synthetic, chemically modified ribozyme eliminates amelogenin, the major translation product in developing mouse enamel in vivo. EMBO J. 1995; 14: 5224–5229
  • Chen E., Piddington R., Decker S., Park J., Yuan Z. A., Abrams W. R., Rosenbloom J., Feldman G., Gibson C. W. Regulation of amelogenin gene expression during tooth development. Dev. Dynamic 1994; 199: 189–198
  • Snead M. L., Paine M. L., Chen L. S., Yoshida B., Luo W., Zhou D. H., Lei Y. P., Liu Y. H., Maxson R. E. The murine amelogenin promoter. Developmentally regulated expression in transgenic animals. Conn. Tissue Res. 1996; 35: 41–47
  • Fincham A. G., Moradian-Oldak J. Comparative mass spectrometric analyses of enamel matrix proteins from five species suggest a common pathway of post-secretory proteolytic processing. Conn. Tissue Res. 1996; 35: 151–156
  • Salih E., Huang J., Strawich E., Gouverneur M., Glimcher M. J. Enamel specific protein kinases and state of phosphorylation of purified amelogenins. Conn. Tissue Res. 1998; 38: 225–235
  • Yamakoshi Y. Carbohydrate moieties of porcine 32kDa enamelin. Calcif. Tissue Intl. 1995; 56: 323–330

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.