626
Views
65
CrossRef citations to date
0
Altmetric
Review Article

The crystal structure of human UDP-glucuronosyltransferase 2B7 C-terminal end is the first mammalian UGT target to be revealed: the significance for human UGTs from both the 1A and 2B families

, , &
Pages 133-144 | Received 14 Jul 2009, Accepted 14 Jul 2009, Published online: 13 Oct 2009

References

  • Bock, K. W. (1992). Metabolic polymorphisms affecting activation of toxic and mutagenic arylamines. Trends Pharmacol Sci 13(6):223–226.
  • Brazier-Hicks, M., Offen, W. A., Gershater, M. C., Revett, T. J., Lim, E. K., Bowles, D. J., et al. (2007). Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc Natl Acad Sci U S A 104(51):20238–20243.
  • Breton, C., Snajdrova, L., Jeanneau, C., Koca, J., Imberty, A. (2006). Structures and mechanisms of glycosyltransferases. Glycobiology 16(2):29R–37R.
  • Campbell, J. A., Davies, G. J., Bulone, V., Henrissat, B. (1997). A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326(Pt 3):929–939.
  • Ciotti, M., Cho, J. W., George, J., Owens, I. S. (1998). Required buried alpha-helical structure in the bilirubin UDP-glucuronosyltransferase, UGT1A1, contains a nonreplaceable phenylalanine. Biochemistry 37(31):11018–11025.
  • Coffman, B. L., Kearney, W. R., Green, M. D., Lowery, R. G., Tephly, T. R. (2001). Analysis of opioid binding to UDP-glucuronosyltransferase 2B7 fusion proteins using nuclear magnetic resonance spectroscopy. Mol Pharmacol 59(6):1464–1469.
  • Coffman, B. L., Kearney, W. R., Goldsmith, S., Knosp, B. M., Tephly, T. R. (2003). Opioids bind to the amino acids 84 to 118 of UDP-glucuronosyltransferase UGT2B7. Mol Pharmacol 63(2):283–288.
  • Coutinho, P., Deleury, E., Davies, G. J., Henrissat, B. (2003). An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317.
  • Ha, S., Walker, D., Shi, Y., Walker, S. (2000). The 1.9 A crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci 9(6):1045–1052.
  • Hu, Y., Walker, S. (2002). Remarkable structural similarities between diverse glycosyltransferases. Chem Biol 9(12):1287–1296.
  • Hu, Y., Chen, L., Ha, S., Gross, B., Falcone, B., Walker, D., et al. (2003). Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc Natl Acad Sci U S A 100(3):845–849.
  • Iyanagi, T., Haniu, M., Sogawa, K., Fujii-Kuriyama, Y., Watanabe, S., Shively, J. E., et al. (1986). Cloning and characterization of cDNA encoding 3-methylcholanthrene inducible rat mRNA for UDP-glucuronosyltransferase. J Biol Chem 261:15607–15614.
  • Kerdpin, O., Mackenzie, P. I., Bowalgaha, K., Finel, M., Miners, J. O. (2009). Influence of N-terminal domain histidine and proline residues on the substrate selectivities of human UDP-glucuronosyltransferase (UGT) 1A1, 1A6, 1A9, 2B7 and 2B10. Drug Metab Dispos 37(9):1948–1955.
  • Kubota, T., Lewis, B. C., Elliot, D. J., Mackenzie, P. I., Miners, J. O. (2007). Critical roles of residues 36 and 40 in the phenol and tertiary amine aglycone substrate selectivities of UDP-glucuronosyltransferases 1A3 and 1A4. Mol Pharmacol 72(4):1054–1062.
  • Lariviere, L., Gueguen-Chaignon, V., Morera, S. (2003). Crystal structures of the T4 phage beta-glucosyltransferase and the D100A mutant in complex with UDP-glucose: glucose binding and identification of the catalytic base for a direct displacement mechanism. J Mol Biol 330(5):1077–1086.
  • Li, D., Fournel-Gigleux, S., Barre, L., Mulliert, G., Netter, P., Magdalou, J., et al. (2007). Identification of aspartic acid and histidine residues mediating the reaction mechanism and the substrate specificity of the human UDP-glucuronosyltransferases 1A. J Biol Chem 282(50):36514–36524.
  • Li, L., Modolo, L. V., Escamilla-Trevino, L. L., Achnine, L., Dixon, R. A., Wang, X. (2007). Crystal structure of Medicago truncatula UGT85H2—insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase. J Mol Biol 370(5):951–963.
  • Locuson, C. W., Tracy, T. S. (2007). Comparative modelling of the human UDP-glucuronosyltransferases: insights into structure and mechanism. Xenobiotica 37(2):155–168.
  • Mackenzie, P. I. (1986). Rat liver UDP-glucuronosyltransferase. Sequence and expression of a cDNA encoding a phenobarbital-inducible form. J Biol Chem 261:6119–6125.
  • Mackenzie, P. I. (1987). Rat liver UDP-glucuronosyltransferase. Identification of cDNAs encoding two enzymes which glucuronidate testosterone, dihydrotestosterone, and β-estradiol. J Biol Chem 262:9744–9749.
  • Mackenzie, P. I., Owens, I. S. (1984). Cleavage of nascent UDP glucuronosyltransferase from rat liver by dog pancreatic microsomes. Biochem Biophys Res Commun 122(3):1441–1449.
  • Mackenzie, P. I., Gonzalez, F. J., Owens, I. S. (1984). Cell-free translation of mouse liver mRNA coding for two forms of UDP glucuronosyltransferase. Arch Biochem Biophys 230(2):676–680.
  • Meech, R., Mackenzie, P. I. (1997). Structure and function of uridine diphosphate glucuronosyltransferases. Clin Exp Pharmacol Physiol 24(12):907–915.
  • Meech, R., Mackenzie, P. I. (1998). Determinants of UDP glucuronosyltransferase membrane association and residency in the endoplasmic reticulum. Arch Biochem Biophys 356(1):77–85.
  • Meech, R., Yogalingam, G., Mackenzie, P. (1996). Mutational analysis of the carboxy-terminal region of UDP-glucuronosyltransferase 2B1. DNA Cell Biol 15(6):489–494.
  • Miley, M. J., Zielinska, A. K., Keenan, J. E., Bratton, S. M., Radominska-Pandya, A., Redinbo, M. R. (2007). Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7. J Mol Biol 369(2):498–511.
  • Morera, S., Lariviere, L., Kurzeck, J., Aschke-Sonnenborn, U., Freemont, P. S., Janin, J., et al. (2001). High resolution crystal structures of T4 phage beta-glucosyltransferase: induced fit and effect of substrate and metal binding. J Mol Biol 311(3):569–577.
  • Mulichak, A. M., Losey, H. C., Walsh, C. T., Garavito, R. M. (2001). Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Structure 9(7):547–557.
  • Mulichak, A. M., Losey, H. C., Lu, W., Wawrzak, Z., Walsh, C. T., Garavito, R. M. (2003). Structure of the TDP-epi-vancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway. Proc Natl Acad Sci U S A 100(16):9238–9243.
  • Mulichak, A. M., Lu, W., Losey, H. C., Walsh, C. T., Garavito, R. M. (2004). Crystal structure of vancosaminyltransferase GtfD from the vancomycin biosynthetic pathway: interactions with acceptor and nucleotide ligands. Biochemistry 43(18):5170–5180.
  • Oelberg, D. G., Chari, M. V., Little, J. M., Adcock, E. W., Lester, R. (1984). Lithocholate glucuronide is a cholestatic agent. J Clin Invest 73(6):1507–1514.
  • Offen, W., Martinez-Fleites, C., Yang, M., Kiat-Lim, E., Davis, B. G., Tarling, C. A., et al. (2006). Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25(6):1396–1405.
  • Osmani, S. A., Bak, S., Imberty, A., Olsen, C. E., Moller, B. L. (2008). Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. Plant Physiol 148(3):1295–1308.
  • Osmani, S. A., Bak, S., Moller, B. L. (2009). Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70(3):325–347.
  • Ouzzine, M., Magdalou, J., Burchell, B., Fournel-Gigleux, S. (1999a). Expression of a functionally active human hepatic UDP-glucuronosyltransferase (UGT1A6) lacking the N-terminal signal sequence in the endoplasmic reticulum. FEBS Lett 454(3):187–191.
  • Ouzzine, M., Magdalou, J., Burchell, B., Fournel-Gigleux, S. (1999b). An internal signal sequence mediates the targeting and retention of the human UDP-glucuronosyltransferase 1A6 to the endoplasmic reticulum. J Biol Chem 274(44):31401–31409.
  • Pedersen, L. C., Darden, T. A., Negishi, M. (2002). Crystal structure of beta 1,3-glucuronyltransferase I in complex with active donor substrate UDP-GlcUA. J Biol Chem 277(24):21869–21873.
  • Radominska-Pandya, A., Czernik, P. J., Little, J. M., Battaglia, E., Mackenzie, P. I. (1999). Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev 31(4):817–899.
  • Senay, C., Ouzzine, M., Battaglia, E., Pless, D., Cano, V., Burchell, B., et al. (1997). Arginine 52 and histidine 54 located in a conserved amino-terminal hydrophobic region (LX2-R52-G-H54-X3-V-L) are important amino acids for the functional and structural integrity of the human liver UDP-glucuronosyltransferase UGT1*6. Mol Pharmacol 51(3):406–413.
  • Shao, H., He, X., Achnine, L., Blount, J. W., Dixon, R. A., Wang, X. (2005). Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17(11):3141–3154.
  • Shepherd, S. R., Baird, S. J., Hallinan, T., Burchell, B. (1989). An investigation of the transverse topology of bilirubin UDP-glucuronosyltransferase in rat hepatic endoplasmic reticulum. Biochem J 259(2):617–620.
  • Unligil, U. M., Rini, J. M. (2000). Glycosyltransferase structure and mechanism. Curr Opinion Struct Biol 10:510–517.
  • Vanstapel, F., Blanckaert, N. (1988). Topology and regulation of bilirubin UDP-glucuronosyltransferase in sealed native microsomes from rat liver. Arch Biochem Biophys 263:216–225.
  • Vore, M., Montgomery, C., Meyers, M. (1983). Steroid D-ring glucuronides: characterization of a new class of cholestatic agents. Drug Metab Rev 14(5):1005–1019.
  • Vrielink, A., Ruger, W., Driessen, H. P., Freemont, P. S. (1994). Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J 13(15):3413–3422.
  • Xiong, Y., Bernardi, D., Bratton, S., Ward, M. D., Battaglia, E., Finel, M., et al. (2006). Phenylalanine 90 and 93 are localized within the phenol binding site of human UDP-glucuronosyltransferase 1A10 as determined by photoaffinity labeling, mass spectrometry, and site-directed mutagenesis. Biochemistry 45(7):2322–2332.
  • Xiong, Y., Patana, A. S., Miley, M. J., Zielinska, A. K., Bratton, S. M., Miller, G. P., et al. (2008). The first aspartic acid of the DQxD motif for human UDP-glucuronosyltransferase 1A10 interacts with UDP-glucuronic acid during catalysis. Drug Metab Dispos 36(3):517–522.
  • Yokota, H., Yuasa, A., Sato, R. (1992). Topological disposition of UDP-glucuronyltransferase in rat liver microsomes. J Biochem (Tokyo) 112(2):192–196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.