1,042
Views
84
CrossRef citations to date
0
Altmetric
Review Article

Comparisons between in vitro whole cell imaging and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development

, , , &
Pages 127-140 | Received 04 May 2011, Accepted 14 Nov 2011, Published online: 30 Jan 2012

References

  • Abboud, G., Kaplowitz, N. (2007). Drug-induced liver injury. Drug Saf 30:277–294.
  • Abraham, V. C., Towne, D. L., Waring, J. F., Warrior, U., Burns, D. J. (2008). Application of a high-content multiparameter cytotoxicity assay to prioritize compounds based on toxicity potential in humans. J Biomol Screen 13:527–537.
  • Alderton, W., Berghmans, S., Butler, P., Chassaing, H., Fleming, A., Golder, Z., et al. (2010). Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae. Xenobiotica 40:547–557.
  • Aleo, M. D. (2009). Cellular imaging of hepatocytes to predict DILI. Recent research advances in drug-induced liver injury. Available at: http://www.aasld.org/conferences/educationtraining/Documents/Hepatoxicity%20Slides/Aleo.pdf. Accessed on November 1, 2011.
  • Aleo, M. D., Doshna, C. M., Jones, M., Hill, A. (March 2010). Blinded assessment of hepatotoxic pharmaceuticals using zebrafish [Abstract #85]. The Toxicologist CD—an official Journal of the Society of Toxicology, Volume 114.
  • Amacher, D. E. (2011). Strategies for the early detection of drug-induced hepatic steatosis in preclinical drug safety evaluation studies. Toxicology 279:10–18.
  • Barros, T. P., Alderton, W. K., Reynolds, H. M., Roach, A. G., Berghmans, S. (2008). Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery. Br J Pharmacol 154:1400–1413.
  • Bauman, J. N., Kelly, J. M., Tripathy, S., Zhao, S. X., Lam, W. W., Kalgutkar, A. S., et al. (2009). Can in vitro metabolism-dependent covalent binding data distinguish hepatotoxic from nonhepatotoxic drugs? An analysis using human hepatocytes and liver S-9 fraction. Chem Res Toxicol 22:332–340.
  • Benbow, J. W., Aubrecht, J., Banker, M. J., Nettleton, D., Aleo, M. D. (2010). Predicting safety toleration of pharmaceutical chemical leads: cytotoxicity correlations to exploratory toxicity studies. Toxicol Lett 197:175–182.
  • Bi, Y.-A., Kazolias, D., Duignan, D. B. (2006). Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metab Dispos 34:1658–1665.
  • Boess, F., Kamber, M., Romer, S., Gasser, R., Muller, D., Albertini, S., et al. (2003). Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: possible implications for toxicogenomics use of in vitro systems. Toxicol Sci 73:386–402.
  • Bresolin, T., De Freitas Rebelo, M., Celso Dias Bainy, A. (2005). Expression of PXR, CYP3A, and MDR1 genes in liver of zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 140, 403–407.
  • Carney, S. A., Peterson, R. E., Heideman, W. (2004). 2,3,7,8-Tetrachlorodibenzo-p-dioxin activation of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator pathway causes developmental toxicity through a CYP1A-independent mechanism in zebrafish. Mol Pharmacol 66:512–521.
  • Chen, M., Vijay, V., Shi, Q., Liu, Z., Fang, H., Tong, W. (2011). FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 16:697–703.
  • Cosgrove, B. D., Alexopoulos, L. G., Hang, T.-C., Hendriks, B. S., Sorger, P. K., Griffith, L. G., et al. (2010). Cytokine-associated drug toxicity in human hepatocytes is associated with signaling network dysregulation. Mol BioSyst 6:1195–1206.
  • Cosgrove, B. D., King, B. M., Hasan, M. A., Alexopoulos, L. G., Farazi, P. A., Hendriks, B. S., et al. (2009). Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity. Toxicol Appl Pharmacol 237:317–330.
  • Daly, A. K. (2004). Pharmacogenetics of the cytochromes P450. Curr Top Med Chem 4:1733–1744.
  • Dimasi, J. A., Hansen, R. W., Grabowski, H. G. (2003). The price of innovation: new estimates of drug development costs. J Health Econ 22:151–185.
  • Dorne, J. L., Walton, K., Renwick, A. G. (2005). Human variability in xenobiotic metabolism and pathway-related uncertainty factors for chemical risk assessment: a review. Food Chem Toxicol 43:203–216.
  • Doshna, C., Benbow, J., Depasquale, M., Okerberg, C., Turnquist, S., Stedman, D., et al. (March 2009). Multi-phase analysis of uptake and toxicity in zebrafish: relationship to compound physical-chemical properties [Abstract #377]. The Toxicologist CD—an official Journal of the Society of Toxicology, Volume 108.
  • Duncan, S. A. (2003). Mechanisms controlling early development of the liver. Mech Dev 120:19–33.
  • Eimon, P. M., Rubinstein, A. L. (2009). The use of in vivo zebrafish assays in drug toxicity screening. Expert Opin Drug Metab Toxicol 5:393–401.
  • Ekins, S., Williams, A. J., Xu, J. J. (2010). A predictive ligand-based Bayesian model for human drug-induced liver injury. Drug Metab Dispos 38:2302–2308.
  • Feng, B., Xu, J. J., Bi, Y. A., Mireles, R., Davidson, R., Duignan, D. B., et al. (2009). Role of hepatic transporters in the disposition and hepatotoxicity of a HER2 tyrosine kinase inhibitor CP-724,714. Toxicol Sci 108:492–500.
  • Field, H. A., Ober, E. A., Roeser, T., Stainier, D. Y. (2003). Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev Biol 253:279–290.
  • Fung, M., Thornton, A., Mybeck, K., Hsiao-Hui, W., Hornbuckle, K., Muniz, E. (2001). Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets—1960 to 1999. Drug Inf J 35:293–317.
  • Goldstone, J. V., Mcarthur, A. G., Kubota, A., Zanette, J., Parente, T., Jonsson, M. E., et al. (2010). Identification and developmental expression of the full complement of cytochrome P450 genes in zebrafish. BMC Genomics 11:643.
  • Greaves, P., Williams, A., Eve, M. (2004). First dose of potential new medicines to humans: how animals help. Nat Rev Drug Discov 3:226–236.
  • Greene, N., Aleo, M. D., Louise-May, S., Price, D. A., Will, Y. (2010a). Using an in vitro cytotoxicity assay to aid in compound selection for in vivo safety studies. Bioorg Med Chem Lett 20:5308–5312.
  • Greene, N., Fisk, L., Naven, R. T., Note, R. R., Patel, M. L., Pelletier, D. J. (2010b). Developing structure-activity relationships for the prediction of hepatotoxicity. Chem Res Toxicol 23:1215–1222.
  • Gross-Steinmeyer, K., Stapleton, P. L., Tracy, J. H., Bammler, T. K., Lehman, T., Strom, S. C., et al. (2005). Influence of Matrigel-overlay on constitutive and inducible expression of nine genes encoding drug-metabolizing enzymes in primary human hepatocytes. Xenobiotica 35:419–438.
  • Hallare, A. V., Schirling, M., Luckenbach, T., Köhler, H. R., Triebskorn, R. (2005). Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J Therm Biol 30:7–17.
  • Hay, D. C., Pernagallo, S., Diaz-Mochon, J. J., Medine, C. N., Greenhough, S., Hannoun, Z., et al. (2011). Unbiased screening of polymer libraries to define novel substrates for functional hepatocytes with inducible drug metabolism. Stem Cell Res 6:92–102.
  • Hewitt, N. J., Hewitt, P. (2004). Phase I and II enzyme characterization of two sources of HepG2 cell lines. Xenobiotica 34:243–256.
  • Hill, A. (2011). Hepatotoxicity testing in larval zebrafish. In: McGrath, P. (Ed.), Zebrafish: methods for assessing drug safety and toxicity. West Sussex, UK: Wiley-Balckwell.
  • Hill, A., Ball, J., Jones, M., Dodd, A., Mesens, N., Vanparys, P. (November 9-12, 2008). Implementation of zebrafish toxicity testing between in vitro and in vivo models to advance candidate selection [Abstract #108]. 29th Annual Meeting of the American College of Toxicology, Tucson, Arizona, USA, November 9–12, 2008.
  • Hill, A. J. (2008a). Zebrafish in drug discovery: bridging the gap between in vitro and in vivo methodologies. Preclinical World 121–123.
  • Hill AJ. (2008b). Zebrafish use in drug discovery [Abstract #1977]. The Toxicologist CD—an official Journal of the Society of Toxicology, Volume 102.
  • Hill, A. J., Howard, C. V., Cossins, A. R. (2002). Efficient embedding technique for preparing small specimens for stereological volume estimation: zebrafish larvae. J Microsc 206:179–181.
  • Hill, A. J., Teraoka, H., Heideman, W., Peterson, R. E. (2005). Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86:6–19.
  • Hinton, D. E., Couch, J. A. (1998). Architectural pattern, tissue, and cellular morphology in livers of fishes: relationship to experimentally-induced neoplastic responses. EXS 86:141–164.
  • Hinton, D. E., Segner, H., Braunbeck, T. (2001). Toxic responses of the liver. In: Schlenk, D., Benson, W. H. (Eds.), Target organ toxicity in marine and freshwater teleosts: organs (pp. 248–298). London: Taylor and Francis.
  • Isogai, S., Horiguchi, M., Weinstein, B. M. (2001). The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230:278–301.
  • Ito, K., Chiba, K., Horikawa, M., Ishigami, M., Mizuno, N., Aoki, J., et al. (2002). Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS PharmSci 4:E25.
  • Jani, J. P., Finn, R. S., Campbell, M., Coleman, K. G., Connell, R. D., Currier, N., et al. (2007). Discovery and pharmacologic characterization of CP-724,714, a selective ErbB2 tyrosine kinase inhibitor. Cancer Res 67:9887–9893.
  • Jemnitz, K., Veres, Z., Vereczkey, L. (2010). Contribution of high basolateral bile salt efflux to the lack of hepatotoxicity in rat in response to drugs inducing cholestasis in human. Toxicol Sci 115:80–88.
  • Jones, D. P., Lemasters, J. J., Han, D., Boelsterli, U. A., Kaplowitz, N. (2010a). Mechanisms of pathogenesis in drug hepatotoxicity putting the stress on mitochondria. Mol Interv 10:98–111.
  • Jones, H. S., Panter, G. H., Hutchinson, T. H., Chipman, J. K. (2010b). Oxidative and conjugative xenobiotic metabolism in zebrafish larvae in vivo. Zebrafish 7:23–30.
  • Jones, M., Ball, J. S., Dodd, A., Hill, A. J. (2009). Comparison between zebrafish and Hep G2 assays for the predictive identification of hepatotoxins. Toxicology 262:13–14.
  • Kaplowitz, N. (2005). Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 4:489–499.
  • Kashimshetty, R, Desai, VG, Kale, VM, Lee, T, Moland, CL, Branham, WS, et al. (2009). Underlying mitochondrial dysfunction triggers flutamide-induced oxidative liver injury in a mouse model of idiosyncratic drug toxicity. Toxicol Appl Pharmacol 238:150–159.
  • Khetani, S. R., Bhatia, S. N. (2008). Microscale culture of human liver cells for drug development. Nat Biotechnol 26:120–126.
  • Kim, Y., Lasher, C. D., Milford, L. M., Murali, T. M., Rajagopalan, P. (2010). A comparative study of genome-wide transcriptional profiles of primary hepatocytes in collagen sandwich and monolayer cultures. Tissue Eng Part C Methods 16:1449–1460.
  • Knasmuller, S., Mersch-Sundermann, V., Kevekordes, S., Darroudi, F., Huber, W. W., Hoelzl, C., et al. (2004). Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology 198:315–328.
  • Lam, S. H., Mathavan, S., Tong, Y., Li, H., Karuturi, R. K. M., Wu, Y., et al. (2008). Zebrafish whole-adult-organism chemogenomics for large-scale predictive and discovery chemical biology. PLoS Genet 4:e1000121.
  • Lee, W. M. (2003). Drug-induced hepatotoxicity. N Engl J Med 349:474–485.
  • Lee, W. M., Senior, J. R. (2005). Recognizing drug-induced liver injury: current problems, possible solutions. Toxicol Pathol 33:155–164.
  • Lee, Y. H., Chung, M. C., Lin, Q., Boelsterli, U. A. (2008). Troglitazone-induced hepatic mitochondrial proteome expression dynamics in heterozygous Sod2(+/-) mice: two-stage oxidative injury. Toxicol Appl Pharmacol 231:43–51.
  • Li, C., Seng, W. L., Mcgrath, P. (2008). Whole zebrafish cytochrome P450 microplate assays for assessing drug metabolism and drug safety [Abstract #777]. The Toxicologist CD—an official Journal of the Society of Toxicology, Volume 102.
  • Li, N., Bi, Y.-A., Duignan, D. B., Lai, Y. (2009). Quantitative expression profile of hepatobiliary transporters in sandwich cultured rat and human hepatocytes. Mol Pharmaceut 6:1180–1189.
  • Mcgrath, P., Li, C.-Q. (2008). Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today 13:394–401.
  • Mingoia, R. T., Nabb, D. L., Yang, C. H., Han, X. (2007). Primary culture of rat hepatocytes in 96-well plates: effects of extracellular matrix configuration on cytochrome P450 enzyme activity and inducibility, and its application in in vitro cytotoxicity screening. Toxicol In Vitro 21:165–173.
  • Morgan, R. E., Trauner, M., Van Staden, C. J., Lee, P. H., Ramachandran, B., Eschenberg, M., et al. (2010). Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci 118:485–500.
  • Munster, P. N., Britten, C. D., Mita, M., Gelmon, K., Minton, S. E., Moulder, S., et al. (2007). First study of the safety, tolerability, and pharmacokinetics of CP-724,714 in patients with advanced malignant solid HER2-expressing tumors. Clin Cancer Res 13:1238–1245.
  • Navarro, V. J., Senior, J. R. (2006). Drug-related hepatotoxicity. N Engl J Med 354:731–739.
  • O’Brien, P., Haskins, J. R. (2007). In vitro cytotoxicity assessment. Methods Mol Biol 356:415–425.
  • O’Brien, P., Irwin, W., Diaz, D., Howard-Cofield, E., Krejsa, C., Slaughter, M., et al. (2006). High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol 80:580–604.
  • O’Brien, PJ, Slaughter, MR, Biagini, C, Diaz, D, Gao, B, Irwin, W, et al. (2003). Predicting drug-induced human hepatotoxicity with in vitro cytotoxicity assays. In: Proceedings Tox’03, London, UK, 2003.
  • Obach, R. S., Kalgutkar, A. S., Soglia, J. R., Zhao, S. X. (2008). Can in vitro metabolism-dependent covalent binding data in liver microsomes distinguish hepatotoxic from nonhepatotoxic drugs? An analysis of 18 drugs with consideration of intrinsic clearance and daily dose. Chem Res Toxicol 21:1814–1822.
  • Ober, E. A., Field, H. A., Stainier, D. Y. (2003). From endoderm formation to liver and pancreas development in zebrafish. Mech Dev 120:5–18.
  • Olson, H., Betton, G., Robinson, D., Thomas, K., Monro, A., Kolaja, G., et al. (2000). Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67.
  • Ostapowicz, G., Fontana, R. J., Schiodt, F. V., Larson, A., Davern, T. J., Han, S. H., et al. (2002). Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 137:947–954.
  • Pack, M., Solnica-Krezel, L., Malicki, J., Neuhauss, S. C., Schier, A. F., Stemple, D. L., et al. (1996). Mutations affecting development of zebrafish digestive organs. Development 123:321–328.
  • Pardo-Martin, C., Chang, T.-Y., Koo, B. K., Gilleland, C. L., Wasserman, S. C. Yanik, M. F. (2010). High-throughput in vivo vertebrate screening. Nat Meth 7:634–636.
  • Peterson, R. T., Macrae, C. A. (2011). Systematic approaches to toxicology in the zebrafish. Annu Rev Pharmacol Toxicol Jan 17. [Epub ahead of print]
  • Pfeifer, A. M., Cole, K. E., Smoot, D. T., Weston, A., Groopman, J. D., Shields, P. G., et al. (1993). Simian virus 40 large tumor antigen-immortalized normal human liver epithelial cells express hepatocyte characteristics and metabolize chemical carcinogens. Proc Natl Acad Sci U S A 90:5123–5127.
  • Postlethwait, J. H., Woods, I. G., Ngo-Hazelett, P., Yan, Y. L., Kelly, P. D., Chu, F., et al. (2000). Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902.
  • Reuben, A. (2004). Hy’s law. Hepatology 39:574–578.
  • Reuben, A., Koch, D. G., Lee, W. M. (2010). Drug-induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology 52:2065–2076.
  • Roth, R. A., Harkema, J. R., Pestka, J. P., Ganey, P. E. (1997). Is exposure to bacterial endotoxin a determinant of susceptibility to intoxication from xenobiotic agents? Toxicol Appl Pharmacol 147:300–311.
  • Routledge, P. A., O’Mahony, M. S., Woodhouse, K. W. (2004). Adverse drug reactions in elderly patients. Br J Clin Pharmacol 57:121–126.
  • Rubinstein, A. L. (2006). Zebrafish assays for drug toxicity screening. Expert Opin Drug Metab Toxicol 2:231–240.
  • Schoonen, W. G., Westerink, W. M., Horbach, G. J. (2009). High-throughput screening for analysis of in vitro toxicity. EXS 99:401–452.
  • Selderslaghs, I. W., Blust, R., Witters, H. E. (2011). Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reprod Toxicol Aug 17. [Epub ahead of print]
  • Senior, J. R. (2007). Drug hepatotoxicity from a regulatory perspective. Clin Liver Dis 11:507–524.
  • Singh, Y. N. (2005). Potential for interaction of kava and St. John’s wort with drugs. J Ethnopharmacol 100:108–113.
  • Stieger, B. (2010). Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab Rev 42:437–445.
  • Stricker, B. H. C. (1992). Drug-induced hepatic injury. Amsterdam: Elsevier.
  • Swift, B., Pfeifer, N. D., Brouwer, K. L. (2010). Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42:446–471.
  • Taylor, D. L. (2010). A personal perspective on high-content screening (HCS): from the beginning. J Biomol Screen 15:720–725.
  • Temple, R. (2006). Hy’s law: predicting serious hepatotoxicity. Pharmacoepidemiol Drug Saf 15:241–243.
  • Tseng, H. P., Hseu, T. H., Buhler, D. R., Wang, W. D., Hu, C. H. (2005). Constitutive and xenobiotics-induced expression of a novel CYP3A gene from zebrafish larva. Toxicol Appl Pharmacol 205:247–258.
  • U.S., FDA. (2009). Guidance for industry-drug-induced liver injury: premarketing clinical evaluation. Available at: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM174090.pdf. Accessed on November 1, 2011.
  • Uetrecht, J. (2007). Idiosyncratic drug reactions: current understanding. Annu Rev Pharmacol Toxicol 47:513–539.
  • Van Den Bulck, K., Hill, A., Mesens, N., Diekman, H., De Schaepdrijver, L., Lammens, L. (2011). Zebrafish developmental toxicity assay: a fishy solution to reproductive toxicity screening, or just a red herring? Reprod Toxicol 32:213–219.
  • Walgren, J. L., Mitchell, M. D., Thompson, D. C. (2005). Role of metabolism in drug-induced idiosyncratic hepatotoxicity. Crit Rev Toxicol 35:325–361.
  • Weigt, S., Huebler, N., Strecker, R., Braunbeck, T., Broschard, T. H. (2011). Zebrafish (Danio rerio) embryos as a model for testing proteratogens. Toxicology 281:25–36.
  • Wilkening, S., Bader, A. (2003). Influence of culture time on the expression of drug-metabolizing enzymes in primary human hepatocytes and hepatoma cell line HepG2. J Biochem Mol Toxicol 17:207–213.
  • Xu, J. J., Diaz, D., O’Brien, P. J. (2004). Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chem Biol Interact 150:115–128.
  • Xu, J. J., Henstock, P. V., Dunn, M. C., Smith, A. R., Chabot, J. R., De Graaf, D. (2008). Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 105:97–105.
  • Zhang, C, Willett, C., Fremgen, T. (2001). Zebrafish: an animal model for toxicological studies. New York: John Wiley & Sons, Inc.
  • Zimmerman, H. J. (1999). Drug-induced liver disease. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver, 2nd ed. (pp. 428–433) Philadelphia, Pennsylvania, USA: Lippincott Williams & Wilkins.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.