1,319
Views
56
CrossRef citations to date
0
Altmetric
Review Article

Role of immune reactions in drug-induced liver injury (DILI)

&
Pages 107-115 | Received 12 Jul 2011, Accepted 14 Nov 2011, Published online: 30 Jan 2012

References

  • Abbas, A. K., Lichtman, A. H., Pober, J. S. (2000). Cellular and molecular immunology, 4th ed. Philadelphia, Pennsylvania: W.B. Saunders.
  • Asea, A., Rehli, M., Kabingu, E., Boch, J. A., Bare, O., Auron, P. E., et al. (2002). Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034.
  • Bertolino, P., Heath, W. R., Hardy, C. L., Morahan, G., Miller, J. F. (1995). Peripheral deletion of autoreactive CD8+ T cells in transgenic mice expressing H-2Kb in the liver. Eur J Immunol 25:1932–1942.
  • Biragyn, A., Ruffini, P. A., Leifer, C. A., Klyushnenkova, E., Shakhov, A., Chertov, O., et al. (2002). Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025–1029.
  • Blazka, M. E., Elwell, M. R., Holladay, S. D., Wilson, R. E., Luster, M. I. (1996). Histopathology of acetaminophen-induced liver changes: role of interleukin 1 alpha and tumor necrosis factor alpha. Toxicol Pathol 24:181–189.
  • Blazka, M. E., Wilmer, J. L., Holladay, S. D., Wilson, R. E., Luster, M. I. (1995). Role of proinflammatory cytokines in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 133:43–52.
  • Bojes, H. K., Thurman, R. G. (1996). Peroxisome proliferators activate Kupffer cells in vivo. Cancer Res 56:1–4.
  • Bourdi, M., Amouzadeh, H. R., Rushmore, T. H., Martin, J. L., Pohl, L. R. (2001). Halothane-induced liver injury in outbred guinea pigs: role of trifluoroacetylated protein adducts in animal susceptibility. Chem Res Toxicol 14:362–370.
  • Bourdi, M., Masubuchi, Y., Reilly, T. P., Amouzadeh, H. R., Martin, J. L., George, J. W., et al. (2002). Protection against acetaminophen-induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatology 35:289–298.
  • Bourdi, M., Tinel, M., Beaune, P. H., Pessayre, D. (1994). Interactions of dihydralazine with cytochromes P4501A: a possible explanation for the appearance of anti-cytochrome P4501A2 autoantibodies. Mol Pharmacol 45:1287–1295.
  • Brody, G. L., Sweet, R. B. (1963). Halothane anesthesia as a possible cause of massive hepatic necrosis. Anesthesiology 24:29–37.
  • Brunt, E. M., White, H., Marsh, J. W., Holtmann, B., Peters, M. G. (1991). Fulminant hepatic failure after repeated exposure to isoflurane anesthesia: a case report. Hepatology 13:1017–1021.
  • Burkhart, C., von Greyerz, S., Depta, J. P., Naisblitt, D. J., Britschqi, M., Park, K. B., et al. (2001). Influence of reduced glutathione on the proliferative response of sulfamethoxazole-specific and sulfamethoxazole-metabolite-specific human CD4+ T-cells. Br J Pharmacol 132:623–630.
  • Calne, R. Y., Sells, R. A., Pena, J. R., Davis, D. R., Millard, P. R., Herbertson, B. M., et al. (1969). Induction of immunological tolerance by porcine liver allografts. Nature 223:472–476.
  • Cantor, H. M., Dumont, A. E. (1967). Hepatic suppression of sensitization to antigen absorbed into the portal system. Nature 215:744–745.
  • Castrejon, J. L., Berry, N., El Ghaiesh, S.,Gerber, B., Pichler, W. J., Park, B. K., et al. (2010). Stimulation of human T cells with sulfonamides and sulfonamide metabolites. J Allergy Clin Immunol 125:411–418.
  • Castrejon, J. L., Lavergne, S. N., El Sheikh, A., Farrell, J., Maggs, J. L., Sabbani, S., et al. (2010). Metabolic and chemical origins of cross-reactive immunological reactions to arylamine benzenesulfonamides: T-cell responses to hydroxylamine and nitroso derivatives. Chem Res Toxicol 23:184–192.
  • Cella, M., Engering, A., Pinet, V., Pieters, J., Lanzavecchia, A. (1997). Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388:782–787.
  • Chen, X., Tharmanathan, T., Mannargudi, B., Gou, H., Uetrecht, J. P. (2009). A study of the specificity of lymphocytes in nevirapine-induced skin rash. J Pharmacol Exp Ther 331:836–841.
  • Chen, Y., Ong, C. R., McKenna, G. J., Mui, A. L., Smith, R. M., Chung, S. W. (2001). Induction of immune hyporesponsiveness after portal vein immunization with ovalbumin. Surgery 129:66–75.
  • Cheng, L., You, Q., Yin, H., Holt, M., Franklin, C., Ju, C. (2009). Effect of polyI:C cotreatment on halothane-induced liver injury in mice. Hepatology 49:215–226.
  • Cheng, L., You, Q., Yin, H., Holt, M. P., Ju, C. (2010). Involvement of natural killer T cells in halothane-induced liver injury in mice. Biochem Pharmacol 80:255–261.
  • Christ, D. D., Kenna, J. G., Kammerer, W., Satoh, H., Pohl, L. R. (1988a). Enflurane metabolism produces covalently bound liver adducts recognized by antibodies from patients with halothane hepatitis. Anesthesiology 69:833–838.
  • Christ, D. D., Satoh, H., Kenna, J. G., Pohl, L. R. (1988b). Potential metabolic basis for enflurane hepatitis and the apparent cross-sensitization between enflurane and halothane. Drug Metab Dispos 16:135–140.
  • Cover, C., Liu, J., Farhood, A., Malle, E., Waalkes, M. P., Bajt, M. L., et al. (2006). Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 216:98–107.
  • Daly, A. K., Donaldson, P. T., Bhatnagar, P., Shen, Y, Pe’er, I., Floratos, A., et al. (2009). HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 41:816–819.
  • Donaldson, P. T., Daly, A. K., Henderson, J., Graham, J., Pirmohamed, M., Bernal, W., et al. (2010). Human leucocyte antigen class II genotype in susceptibility and resistance to co-amoxiclav-induced liver injury. J Hepatol 53:1049–1053.
  • Dugan, C. M., Fullerton, A. M., Roth, R. A., Ganey, P. E. (2011). Natural killer cells mediate severe liver injury in a murine model of halothane hepatitis. Toxicol Sci 120:507–518.
  • Dugan, C. M., Macdonald, A. E., Roth, R. A., Ganey, P. E. (2010). A mouse model of severe halothane hepatitis based on human risk factors. J Pharmacol Exp Ther 333:364–372.
  • Eger, E. I. (2004). Characteristics of anesthetic agents used for induction and maintenance of general anesthesia. Am J Health Syst Pharm 61(Suppl 4):S3–S10.
  • Enomoto, N., Ikejima, K., Bradford, B., Rivera, C., Kono, H., Brenner, D. A., et al. (1998). Alcohol causes both tolerance and sensitization of rat Kupffer cells via mechanisms dependent on endotoxin. Gastroenterology 115:443–451.
  • Fee, J. P., Thompson, G. H. (1997). Comparative tolerability profiles of the inhaled anaesthetics. Drug Saf 16:157–170.
  • Feng, D., Wang, Y., Xu, Y., Luo, Q., Lan, B., Xu, L. (2009). Interleukin 10 deficiency exacerbates halothane induced liver injury by increasing interleukin 8 expression and neutrophil infiltration. Biochem Pharmacol 77:277–284.
  • Fischl, M. A., Dickinson, G. M., La Voie, L. (1998). Safety and efficacy of sulfamethoxazole and trimethoprim chemoprophylaxis for Pneumocystis carinii pneumonia in AIDS. JAMA 259:1185–1189.
  • Gallucci, S., Matzinger, P. (2001). Danger signals: SOS to the immune system. Curr Opin Immunol 13:114–119.
  • Gandolfi, A. J., White, R. D., Sipes, I. G., Pohl, L. R. (1980). Bioactivation and covalent binding of halothane in vitro:studies with [3H]- and [14C]halothane. J Pharmacol Exp Ther 214:721–725.
  • Ganey, P. E., Roth, R. A. (2001). Concurrent inflammation as a determinant of susceptibility to toxicity from xenobiotic agents. Toxicology 169:195–208.
  • Gorczynski, R. M., Chan, Z., Chung, S., Cohen, Z., Levy, G., Sullivan, B., et al. (1994). Prolongation of rat small bowel or renal allograft survival by pretransplant transfusion and/or by varying the route of allograft venous drainage. Transplantation 58:816–820.
  • Gunaratnam, N. T., Benson, J., Gandolfi, A. J., Chen, M. (1995). Suspected isoflurane hepatitis in an obese patient with a history of halothane hepatitis. Anesthesiology 83:1361–1364.
  • Gunawan, B., Kaplowitz, N. (2004). Clinical perspectives on xenobiotic-induced hepatotoxicity. Drug Metab Rev 36:301–312.
  • Harrill, A. H., Watkins, P. B., Su, S., Ross, P. K., Harbourt, D. E., Stylianou, I. M., et al. (2009). Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans. Genome Res 19:1507–1515.
  • Hirata, K., Takagi, H., Yamamoto, M., Matsumoto, T., Nishiya, T., Mori, K., et al. (2008). Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J 8:29–33.
  • Huang, L., Soldevila, G., Leeker, M., Flavell, R., Crispe, I. N. (1994). The liver eliminates T cells undergoing antigen-triggered apoptosis in vivo. Immunity 1:741–749.
  • Igarashi, T. (1994). The duration of toxicity studies required to support repeated dosing in clinical investigation—a toxicologists opinion. In: Parkinson, C., McAuslane, N., Lumley, C., Waler, S. R. (Eds.), CMR Workshop: the timing of toxicological studies to support clinical trials (pp. 67–74). Boston, Massachusetts, USA: Kluwer.
  • Iimuro, Y., Ikejima, K., Rose, M. L., Bradford, B. U., Thurman, R. G. (1996). Nimodipine, a dihydropyridine-type calcium channel blocker, prevents alcoholic hepatitis caused by chronic intragastric ethanol exposure in the rat. Hepatology 24:391–397.
  • Ishida, Y., Kondo, T., Kimura, A., Tsuneyama, K., Takayasu, T., Mukaida, N. (2006). Opposite roles of neutrophils and macrophages in the pathogenesis of acetaminophen-induced acute liver injury. Eur J Immunol 36:1028–1038.
  • Ishida Y., Kondo T., Ohshima T., Fujiwara H., Iwakura Y., Mukaida M. (2002). A pivotal involvement of IFN-gamma in the pathogenesis of acetaminophen-induced acute liver injury. FASEB J 16:1227–1236.
  • Iwai, Y., Terawaki, S., Ikegawa, M., Okazaki, T., Honjo, T. (2003). PD-1 inhibits antiviral immunity at the effector phase in the liver. J Exp Med 198:39–50.
  • Jaeschke, H., Williams, C. D., Ramachandran, A., Bajt, M. L. (2011). Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int Mar 14. [Epub ahead of print]
  • Järveläinen HA, Orpana A, Perola M, Savolainen VT, Karhunen PJ, Lindros KO. (2001). Promoter polymorphism of the CD14 endotoxin receptor gene as a risk factor for alcoholic liver disease. Hepatology 33:1148–1153.
  • Ju, C., McCoy, J. P., Chung, C. J., Graf, M. L., Pohl, L. R. (2003). Tolerogenic role of Kupffer cells in allergic reactions. Chem Res Toxicol 16:1514–1519.
  • Ju, C., Reilly, T. P., Bourdi, M., Radonovich, M. F., Brady, J. N., George, J. W., et al. (2002). Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem Res Toxicol 15:1504–1513.
  • Kawamura, H., Aswad, F., Minagawa, M., Govindarajan, S., Dennert, G. (2006). P2X7 receptors regulate NKT cells in autoimmune hepatitis. J Immunol 176:2152–2160.
  • Kenna, J. G., Satoh, H., Christ, D. D., Pohl, L. R. (1988). Metabolic basis for a drug hypersensitivity: antibodies in sera from patients with halothane hepatitis recognize liver neoantigens that contain the trifluoroacetyl group derived from halothane. J Pharmacol Exp Ther 245:1103–1109.
  • Kharasch, E. D. (2008). Adverse drug reactions with halogenated anesthetics. Clin Pharmacol Ther 84:158–162.
  • Kindmark, A., Jawaid, A., Harbron, C. G., Barratt, B. J., Bengtsson, O. F., Andersson, T. B., et al. (2008). Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J 8:186–195.
  • Kmieć, Z. (2001). Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161: III–XIII, 1–151.
  • Knolle, P. A., Gerken, G. (2000). Local control of the immune response in the liver. Immunol Rev 174:21–34.
  • Knolle, P. A., Schmitt, E., Jin, S., Germann, T., Duchmann, R., Hegenbarth, S., et al. (1999). Induction of cytokine production in naive CD4(+) T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology 116:1428–1440.
  • Kobayashi, E, Kobayashi, M, Tsuneyama, K, Fukami, T, Nakajima, M, Yokoi, T. (2009). Halothane-induced liver injury is mediated by interleukin-17 in mice. Toxicol Sci 111:302–310.
  • Lai, W. G., Gardner, I., Zahid, N., Uetrecht, J. P. (2000). Bioactivation and covalent binding of hydroxyfluperlapine in human neutrophils: implications for fluperlapine-induced agranulocytosis. Drug Metab Dispos 28:255–263.
  • Laskin, D. L. (1990). Nonparenchymal cells and hepatotoxicity. Semin Liver Dis 10:293–304.
  • Laskin, D. L., Gardner, C. R., Price, V. F., Jollow, D. J. (1995). Modulation of macrophage functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology 21:1045–1050.
  • Laskin, D. L., Pilaro, A. M., Ji, S. (1986). Potential role of activated macrophages in acetaminophen hepatotoxicity. II. Mechanism of macrophage accumulation and activation. Toxicol Appl Pharmacol 86:216–226.
  • Lawson, J. A., Farhood, A., Hopper, R. D., Bajt, M. L., Jaeschke, H. (2000). The hepatic inflammatory response after acetaminophen overdose: role of neutrophils. Toxicol Sci 54:509–516.
  • Lecoeur, S., Andre, C., Beaune, P. H. (1996). Tienilic acid-induced autoimmune hepatitis: anti-liver and-kidney microsomal type 2 autoantibodies recognize a three-site conformational epitope on cytochrome P4502C9. Mol Pharmacol 50:326–333.
  • Lewis, J. H., Zimmerman, H. J., Ishak, K. G., Mullick, F. G. (1983). Enflurane hepatotoxicity. A clinicopathologic study of 24 cases. Ann Intern Med 98:984–992.
  • Levy, M. (1997). Role of viral infections in the induction of adverse drug reactions. Drug Saf 16:1–8.
  • Limmer, A., Ohl, J., Kurts, C., Ljunggren H.-G, Reiss Y., Groettrup, M., et al. (2000). Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 6:1348–1354.
  • Lind, R. C., Gandolfi, A. J., Hall, P. D. (1989a). The role of oxidative biotransformation of halothane in the guinea pig model of halothane-associated hepatotoxicity. Anesthesiology 70:649–653.
  • Lind, R. C., Gandolfi, A. J., Hall, P. D. (1989b). Age and gender influence halothane-associated hepatotoxicity in strain 13 guinea pigs. Anesthesiology 71:878–884.
  • Lind, R. C., Gandolfi, A. J., Hall, P. D. (1990). Covalent binding of oxidative biotransformation intermediates is associated with halothane hepatotoxicity in guinea pigs. Anesthesiology 73:1208–1213.
  • Lindenbaum, J., Leifer, E. (1963). Hepatic necrosis associated with halothane anesthesia. N Engl J Med 268:525–530.
  • Liu, Z. X., Govindarajan, S., Kaplowitz, N. (2004). Innate immune system plays a critical role in determining the progression and severity of acetaminophen hepatotoxicity. Gastroenterology 127:1760–1774.
  • Liu, Z. X., Han, D., Gunawan, B., Kaplowitz, N. (2006). Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology 43:1220–1230.
  • Lu, W., Uetrecht, J. P. (2008). Peroxidase-mediated bioactivation of hydroxylated metabolites of carbamazepine and phenytoin. Drug Metab Dispos 36:1624–1636.
  • Lumley, C. (1990). Clinical toxicity: could it have been prevented? Premarketing experience. In: Lumley, C. E., Walker, S. W. (Eds.), CMR Workshop—animal toxicity studies: their relevance for man (pp. 49–56). Lancaster, UK: Quay.
  • Lunam, C. A., Cousins, M. J., Hall, P. D. (1985). Guinea-pig model of halothane-associated hepatotoxicity in the absence of enzyme induction and hypoxia. J Pharmacol Exp Ther 232:802–809.
  • Luyendyk JP, Maddox JF, Cosma GN, Ganey PE, Cockerell GL, Roth RA. (2003). Ranitidine treatment during a modest inflammatory response precipitates idiosyncrasy-like liver injury in rats. J Pharmacol Exp Ther 307:9–16.
  • Martin, J. L., Plevak, D. J., Flannery, K. D., Charlton, M., Poterucha, J. J., Humphreys, C. E., et al. (1995). Hepatotoxicity after desflurane anesthesia. Anesthesiology 83:1125–1129.
  • Martin-Murphy, B. V., Holt, M. P., Ju, C. (2010). The role of damage associated molecular pattern molecules in acetaminophen-induced liver injury in mice. Toxicol Lett 192:387–394.
  • Masson, M. J., Carpenter, L. D., Graf, M. L., Pohl, L. R. (2008). Pathogenic role of natural killer T and natural killer cells in acetaminophen-induced liver injury in mice is dependent on the presence of dimethyl sulfoxide. Hepatology 48:889–897.
  • Masubuchi, Y., Bourdi, M., Reilly, T. P., Graf, M. L., George, J. W., Pohl, L. R. (2003). Role of interleukin-6 in hepatic heat shock protein expression and protection against acetaminophen-induced liver disease. Biochem Biophys Res Commun 304:207–212.
  • McLain, G. E., Sipes, I. G., Brown, B. R. Jr (1979). An animal model of halothane hepatotoxicity: roles of enzyme induction and hypoxia. Anesthesiology 51:321–326.
  • Meyers DG, Gonzalez ER, Peters LL, davis RB, Feagler JR, Egan JD, et al. (1985). Severe neutropenia associated with procainamide: comparison of sustained release and conventional preparations. Am Heart J 109:1393–1395.
  • Michael, S. L., Pumford, N. R., Mayeux, P. R., Niesman, M. R., Hinson, J. A. (1999). Pretreatment of mice with macrophage inactivators decreases acetaminophen hepatotoxicity and the formation of reactive oxygen and nitrogen species. Hepatology 30:186–195.
  • Naisbitt, D. J., Britschgi, M., Wong, G., Farrell, J., Depta, J. P., Chadwick, D. W., et al. (2003). Hypersensitivity reactions to carbamazepine: characterization of the specificity, phenotype, and cytokine profile of drug-specific T cell clones. Mol Pharmacol 63:732–741.
  • Naisbitt, D. J., Farrell, J., Wong, G., Depta, J. B., Dodd, C. C., Hopkins, J. E., et al. (2003). Characterization of drug-specific T cells in lamotrigine hypersensitivity. J Allergy Clin Immunol 111:1393–1403.
  • Nelson, S. D., Pearson, P. G. (1990). Covalent and noncovalent interactions in acute lethal cell injury caused by chemicals. Annu Rev Pharmacol Toxicol 30:169–195.
  • Nguyen, G. C., Sam, J., Thuluvath, P. J. (2008). Hepatitis C is a predictor of acute liver injury among hospitalizations for acetaminophen overdose in the United States: a nationwide analysis. Hepatology 48:1336–1341.
  • Njoku, D. B., Shrestha, S., Soloway, R., Duray, P. R., Tsokos, M., Abu-Asab, M. S., et al. (2002). Subcellular localization of trifluoroacetylated liver proteins in association with hepatitis following isoflurane. Anesthesiology 96:757–761.
  • Norris S., Collins C., Doherty D. G., Smith F., McEntee G., Traynor O., et al. (1998). Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol 28:84–90.
  • Norris, S., Doherty, D. G., Collins, C., McEntee, G., Traynor, O., Hegarty, J. E., et al. (1999). Natural T cells in the human liver: cytotoxic lymphocytes with dual T cell and natural killer cell phenotype and function are phenotypically heterogenous and include Valpha24-JalphaQ and gammadelta T cell receptor bearing cells. Hum Immunol 60:20–31.
  • Ona, F. V., Patanella, H., Ayub, A. (1980). Hepatitis associated with enflurane anesthesia. Anesth Analg 59:146–149.
  • Park, B. K., Pirmohamed, M., Kitteringham, N. R. (1998). Role of drug disposition in drug hypersensitivity: a chemical, molecular, and clinical perspective. Chem Res Toxicol 11:969–988.
  • Peitsch, M. C., Tschopp, J., Kress, A., Isliker, H. (1988). Antibody-independent activation of the complement system by mitochondria is mediated by cardiolipin. Biochem J 249:495–500.
  • Pichler, W. J. (2002). Pharmacological interaction of drugs with antigen-specific immune receptors: the p-i concept. Curr Opin Allergy Clin Immunol 2:301–305.
  • Pichler, W. J. (2005). Direct T-cell stimulations by drugs—bypassing the innate immune system. Toxicology 209:95–100.
  • Pillarisetty, V. G., Shah, A. B., Miller, G., Bleier, J. I., DeMatteo, R. P. (2004). Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J Immunol 172:1009–1017.
  • Pohl, L. R., Kenna, J. G., Satoh, H., Christ, D., Martin, J. L. (1989). Neoantigens associated with halothane hepatitis. Drug Metab Rev 20:203–217.
  • Pullen, H., Wright, N., Murdoch, J. M. (1967). Hypersensitivity reactions to antibacterial drugs in infectious mononucleosis. Lancet 2:1176–1178.
  • Rao, V. K., Burris, D. E., Gruel, S. M., Sollinger, H. W., Burlingham, W. J. (1988). Evidence that donor spleen cells administered through the portal vein prolong the survival of cardiac allografts in rats. Transplantation 45:1145–1146.
  • Reilly, T. P., Brady, J. N., Marchick, M. R., Bourdi, M., George, J. W., Radonovich, M. F., et al. (2001). A protective role for cyclooxygenase-2 in drug-induced liver injury in mice. Chem Res Toxicol 14:1620–1628.
  • Robertson, D. G., Watkins, P. B., Reily, M. D. (2011). Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci 120(Suppl 1):S146–S170.
  • Ross, W. T., Jr., Daggy, B. P., Cardell, R. R. Jr (1979). Hepatic necrosis caused by halothane and hypoxia in phenobarbital-treated rats. Anesthesiology 51:327–333.
  • Satoh, H., Martin, B. M., Schulick, A. H., Christ, D. D., Kenna, J. G., Pohl, L. R., et al. (1989). Human anti-endoplasmic reticulum antibodies in sera of patients with halothane-induced hepatitis are directed against a trifluoroacetylated carboxylesterase. Proc Natl Acad Sci U S A 86:322–326.
  • Schmittel, A., Scheibenbogen, C., Keilholz, U. (1995). Lipopolysaccharide effectively up-regulates B7-1 (CD80) expression and costimulatory function of human monocytes. Scand J Immunol 42:701–704.
  • Schnyder, B., Burkhart, C., Schnyder-Frutig, K., von Greyerz, S., Naisblitt, D. J., Pirmohamed, M., et al. (2000). Recognition of sulfamethoxazole and its reactive metabolites by drug-specific CD4+ T cells from allergic individuals. J Immunol 164:6647–6654.
  • Schnyder, B., Mauri-Hellweg, D., Zanni, M., Bettens, F., Pichler, W. J. (1997). Direct, MHC-dependent presentation of the drug sulfamethoxazole to human alphabeta T cell clones. J Clin Invest 100:136–141.
  • Seong, S. Y., Matzinger, P. (2004). Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4:469–478.
  • Shaw, P. J., Ganey, P. E., Roth, R. A. (2010). Idiosyncratic drug-induced liver injury and the role of inflammatory stress with an emphasis on an animal model of trovafloxacin hepatotoxicity. Toxicol Sci 118:7–18.
  • Shaw, P. J., Hopfensperger, M. J., Ganey, P. E., Roth, R. A. (2007). Lipopolysaccharide and trovafloxacin coexposure in mice causes idiosyncrasy-like liver injury dependent on tumor necrosis factor-alpha. Toxicol Sci 100:259–266.
  • Shi, Y., Evans, J. E., Rock, K. L. (2003). Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521.
  • Singer, J. B., Lewitzky, S., Leroy, E., Yang, F., Zhao, X., Klickstein, L., et al. (2010). A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 42:711–714.
  • Sinha, A., Clatch, R. J., Stuck, G., Blumenthal, S. A., Patel, S. A. (1996). Isoflurane hepatotoxicity: a case report and review of the literature. Am J Gastroenterol 91:2406–2409.
  • Spracklin, D. K., Hankins, D. C., Fisher, J. M., Thummel, K. E., Kharasch, E. D. (1997). Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro. J Pharmacol Exp Ther 281:400–411.
  • Spraggs, C. F., Budde, L. R., Briley, L. P., Bing, N., Cox, C. L., King, K. S., et al. (2011). HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol 29:667–673.
  • Stachnik, J. (2006). Inhaled anesthetic agents. Am J Health Syst Pharm 63:623–634.
  • Stewart JD, Horvath R, Baruffini E, Ferrero I, Bulst S, Watkins PB, et al. (2010). Polymerase gamma gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology 52:1791–1796.
  • Termeer, C., Benedix, F., Sleeman, J., Fieber, C., Voith, U., Ahrens, T., et al. (2002). Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195:99–111.
  • Turner, G. B., O’Rourke, D., Scott, G. O., Beringer, T. R. (2000). Fatal hepatotoxicity after re-exposure to isoflurane: a case report and review of the literature. Eur J Gastroenterol Hepatol 12:955–959.
  • Uetrecht, J. P. (1996). Reactive metabolites and agranulocytosis. Eur J Haematol Suppl 60:83–88.
  • Uetrecht, J. P. (1999). New concepts in immunology relevant to idiosyncratic drug reactions: the “danger hypothesis” and innate immune system. Chem Res Toxicol 12:387–395.
  • Uetrecht, J. P., Zahid, N., Whitfield, D. (1994). Metabolism of vesnarinone by activated neutrophils: implications for vesnarinone-induced agranulocytosis. J Pharmacol Exp Ther 270:865–872.
  • Van der Reis, L., Askin, S. J., Frecker, G. N., Fitzgerald, W. J. (1974). Letter: hepatic necrosis after enflurane anesthesia. JAMA 227:76.
  • Vergani, D., Mieli-Vergani, G., Alberti, A., Neuberger, J., Eddleston, A. L., Davis, M., et al. (1980). Antibodies to the surface of halothane-altered rabbit hepatocytes in patients with severe halothane-associated hepatitis. N Engl J Med 303:66–71.
  • Wallin, R. P., Lundqvist, A., More, S. H., von Bonin, A., Kiessling, R., Ljunggren, H. G. (2002). Heat-shock proteins as activators of the innate immune system. Trends Immunol 23:130–135.
  • Wetmore, B. A., Brees, D. J., Singh, R., Watkins, P. B., Andersen, M. E., Loy, J., et al. (2010). Quantitative analyses and transcriptomic profiling of circulating messenger RNAs as biomarkers of rat liver injury. Hepatology 51:2127–2139.
  • Wilke, R. A., Lin, D. W., Roden, D. M., Watkins, P. B., Flockhart, D., Zineh, I., et al. (2007). Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 6:904–916.
  • Wright, R., Eade, O. E., Chisholm, M., Hawksley, M., Lloyd, B., Moles, T. M., et al. (1975). Controlled prospective study of the effect on liver function of multiple exposures to halothane. Lancet 1:817–820.
  • Yee, S. B., Bourdi, M., Masson, M. J., Pohl, L. R. (2007). Hepatoprotective role of endogenous interleukin-13 in a murine model of acetaminophen-induced liver disease. Chem Res Toxicol 20:734–744.
  • You, Q., Cheng, L., Kedl, R. M., Ju, C. (2008). Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 48:978–990.
  • You, Q., Cheng, L., Reilly, T. P., Wegmann, D., Ju, C. (2006). Role of neutrophils in a mouse model of halothane-induced liver injury. Hepatology 44:1421–1431.
  • Zimmerman, H. J. (1999). Drug-induced liver disease. In: Schiff, E., Sorrell, M., Maddrey, W. C. (Eds.), Schiff’s diseases of the liver (pp. 973–1064). Philadelphia, Pennsylvania, USA: Lippincott-Raven.
  • Zou, W., Beggs, K. M., Sparkenbaugh, E. M., Jones, A. D., Younis, H. S., Roth, R. A., et al. (2009). Sulindac metabolism and synergy with tumor necrosis factor-alpha in a drug-inflammation interaction model of idiosyncratic liver injury. J Pharmacol Exp Ther 331:114–121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.