358
Views
9
CrossRef citations to date
0
Altmetric
Review Article

Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling

&
Pages 1-17 | Received 14 Nov 2011, Accepted 14 Nov 2011, Published online: 30 Jan 2012

References

  • Atkins, W. M. (2005). Non-Michaelis-Menten kinetics in cytochrome P450-catalyzed reactions. Annu Rev Pharmacol Toxicol 45:291–310.
  • Davydov, D. R., Halpert, J. R. (2008). Allosteric P450 mechanisms: multiple binding sites, multiple conformers, or both? Expert Opin Drug Metab Toxicol 4:1523–1535.
  • de Groot, M. J., Ackland, M. J., Horne, V. A., Alex, A. A., Jones, B. C. (1999a). Novel approach to predicting P450-mediated drug metabolism: development of a combined protein and pharmacophore model for CYP2D6. J Med Chem 42:1515–1524.
  • de Groot, M. J., Ackland, M. J., Horne, V. A., Alex, A. A., Jones, B. C. (1999b). A novel approach to predicting P450 mediated drug metabolism. CYP2D6 catalyzed N-dealkylation reactions and qualitative metabolite predictions using a combined protein and pharmacophore model for CYP2D6. J Med Chem 42:4062–4070.
  • de Groot, M. J., Alex, A. A., Jones, B. C. (2002). Development of a combined protein and pharmacophore model for cytochrome P450 2C9. J Med Chem 45:1983–1993.
  • de Groot, M. J., Bijloo, G. J., Martens, B. J., van Acker, F. A., Vermeulen, N. P. (1997). A refined substrate model for human cytochrome P450 2D6. Chem Res Toxicol 10:41–48.
  • de Groot, M. J., Kirton, S. B., Sutcliffe, M. J. (2004). In silico methods for predicting ligand binding determinants of cytochromes P450. Curr Top Med Chem 4:1803–1824.
  • De Rienzo, F., Fanelli, F., Menziani, M. C., De Benedetti, P. G. (2000). Theoretical investigation of substrate specificity for cytochromes P450 IA2, P450 IID6, and P450 IIIA4. J Comput Aided Mol Des 14:93–116.
  • Ekins, S., Bravi, G., Binkley, S., Gillespie, J. S., Ring, B. J., Wikel, J. H., et al. (1999b) Three- and four-dimensional quantitative structure activity relationship analyses of cytochrome P-450 3A4 inhibitors. J Pharmacol Exp Ther 290:429–438.
  • Ekins, S., Bravi, G., Binkley, S., Gillespie, J. S., Ring, B. J., Winkel, J. H., et al. (2000). Three- and four-dimensional quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug Metab Dispos 28:994–1002.
  • Ekins, S., Bravi, G., Ring, B. J., Gillespie, T. A., Gillespie, J. S., Vandenbranden, M. et al. (1999a). Three-dimensional quantitative structure activity relationship analyses of substrates for CYP2B6. J Pharmacol Exp Ther 288:21–29.
  • Ekins, S., Bravi, G., Wikel, J. H., Wrighton, S. A. (1999c). Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther 291:424–433.
  • Ekins, S., de Groot, M. J., Jones, J. P. (2001). Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome p450 active sites. Drug Metab Dispos 29:936–944.
  • Ekroos, M., Sjögren, T. (2006). Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci U S A 103:13682–13687.
  • Ellis, S. W., Hayhurst, G. P., Smith, G., Lightfoot, T., Wong, M. M., Simula, A. P. et al. (1995). Evidence that aspartic acid 301 is a critical substrate-contact residue in the active site of cytochrome P450 2D6. J Biol Chem 270:29055–29058.
  • Emoto, C., Murayama, N., Rostami-Hodjegan, A., Yamazaki, H. (2010). Methodologies for investigating drug metabolism at the early drug discovery stage: prediction of hepatic drug clearance and P450 contribution. Curr Drug Metab 11:678–685.
  • Fuhr, U., Strobl, G., Manaut, F., Anders, E. M., Sorgel, F., Lopez de Brinas, E., et al. (1993). Quinolone antibacterial agents: relationship between structure and in vitro inhibition of human cytochrome P450 isoform CYP1A2. Mol Pharmacol 43:191–199.
  • Gay, S. C., Shah, M. B., Talakad, J. C., Maekawa, K., Roberts, A. G., Wilderman, P. R., et al. (2010). Crystal structure of a cytochrome P450 2B6 genetic variant in complex with the inhibitor 4-(4-chlorophenyl)imidazole at 2.0-A resolution. Mol Pharmacol 77:529–538.
  • Gotoh, O. (1992). Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267:83–90.
  • Gouet, P., Courcelle, E. (2002). ENDscript: a workflow to display sequence and structure information. Bioinformatics 18:767–768.
  • Guengerich, F. P. (2008). Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21:70–83.
  • He, S. M., Zhou, Z. W., Li, X. T., Zhou, S. F. (2011). Clinical drugs undergoing polymorphic metabolism by human cytochrome P450 2C9 and the implication in drug development. Curr Med Chem 18:667–713.
  • Hutzler, J. M., Tracy, T. S. (2002). Atypical kinetic profiles in drug metabolism reactions. Drug Metab Dispos 30:355–362.
  • Ioannides, C., Lewis, D. F. (2004). Cytochromes P450 in the bioactivation of chemicals. Curr Top Med Chem 4:1767–1788.
  • Islam, S. A., Wolf, C. R., Lennard, M. S., Sternberg, M. J. (1991). A three-dimensional molecular template for substrates of human cytochrome P450 involved in debrisoquine 4-hydroxylation. Carcinogenesis 12:2211–2219.
  • Johnson, E. F., Stout, C. D. (2005). Structural diversity of human xenobiotic-metabolizing cytochrome P450 monooxygenases. Biochem Biophys Res Commun 338:331–336.
  • Jones, B. C., Hawksworth, G., Horne, V. A., Newlands, A., Morsman, J., Tute, M. S., et al. (1996a). Putative active site template model for cytochrome P4502C9 (tolbutamide hydroxylase). Drug Metab Dispos 24:260–266.
  • Jones, J. P., He, M., Trager, W. F., Rettie, A. E. (1996b) Three-dimensional quantitative structure-activity relationship for inhibitors of cytochrome P4502C9. Drug Metab Dispos 24:1–6.
  • Kola, I., Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715.
  • Koymans, L., Vermeulen, N. P., van Acker, S. A., te Koppele, J. M., Heykants, J. J., Lavrijsen, K., et al. (1992). A predictive model for substrates of cytochrome P450-debrisoquine (2D6). Chem Res Toxicol 5:211–219.
  • Lee, A. J., Cai, M. X., Thomas, P. E., Conney, A. H., Zhu, B. T. (2003). Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology 144:3382–3398.
  • Lee, H., Yeom, H., Kim, Y. G., Yoon, C. N., Jin, C., Choi, J. S., et al. (1998). Structure-related inhibition of human hepatic caffeine N3-demethylation by naturally occurring flavonoids. Biochem Pharmacol 55:1369–1375.
  • Lennard, M. S. (1990). Genetic polymorphism of sparteine/debrisoquine oxidation: a reappraisal. Pharmacol Toxicol 67:273–283.
  • Leong, M. K., Chen, Y. M., Chen, H. B., Chen, P. H. (2009). Development of a new predictive model for interactions with human cytochrome P450 2A6 using pharmacophore ensemble/support vector machine (PhE/SVM) approach. Pharm Res 26:987–1000.
  • Lewis, D. F., Eddershaw, P. J., Goldfarb, P. S., Tarbit, M. H. (1996). Molecular modelling of CYP3A4 from an alignment with CYP102: identification of key interactions between putative active site residues and CYP3A-specific chemicals. Xenobiotica 26:1067–1086.
  • Lewis, D. F., Eddershaw, P. J., Goldfarb, P. S., Tarbit, M. H. (1997). Molecular modelling of cytochrome P4502D6 (CYP2D6) based on an alignment with CYP102: structural studies on specific CYP2D6 substrate metabolism. Xenobiotica 27:319–339.
  • Lewis, D. F., Ito, Y., Goldfarb, P. S. (2006). Structural modelling of the human drug-metabolizing cytochromes P450. Curr Med Chem 13:2645–2652.
  • Lewis, D. F., Ito, Y. (2009). Human P450s involved in drug metabolism and the use of structural modelling for understanding substrate selectivity and binding affinity. Xenobiotica 39:625–635.
  • Lewis, D. F., Jacobs, M. N., Dickins, M. (2004). Compound lipophilicity for substrate binding to human P450s in drug metabolism. Drug Discov Today 9:530–537.
  • Lewis, D. F., Lake, B. G. (1996). Molecular modelling of CYP1A subfamily members based on an alignment with CYP102: rationalization of CYP1A substrate specificity in terms of active site amino acid residues. Xenobiotica 26:723–753.
  • Liu, J., Ericksen, S. S., Sivaneri, M., Besspiata, D., Fisher, C. W., Szklarz, G. D. (2004). The effect of reciprocal active site mutations in human cytochromes P450 1A1 and 1A2 on alkoxyresorufin metabolism. Arch Biochem Biophys 424:33–43.
  • Mancy, A., Broto, P., Dijols, S., Dansette, P. M., Mansuy, D. (1995). The substrate binding site of human liver cytochrome P450 2C9: an approach using designed tienilic acid derivatives and molecular modeling. Biochemistry 34:10365–10375.
  • Mancy, A., Dijols, S., Poli, S., Guengerich, P., Mansuy, D. (1996). Interaction of sulfaphenazole derivatives with human liver cytochromes P450 2C: molecular origin of the specific inhibitory effects of sulfaphenazole on CYP 2C9 and consequences for the substrate binding site topology of CYP 2C9. Biochemistry 35:16205–16212.
  • Marill, J., Capron, C. C., Idres, N., Chabot, G. G. (2002). Human cytochrome P450s involved in the metabolism of 9-cis- and 13-cis-retinoic acids. Biochem Pharmacol 63:933–943.
  • McLaughlin, L. A., Paine, M. J., Kemp, C. A., Maréchal, J. D., Flanagan, J. U., Ward, C. J., Sutcliffe, M. J., et al. (2005). Why is quinidine an inhibitor of cytochrome P450 2D6? The role of key active-site residues in quinidine binding. J Biol Chem 280:38617–38624.
  • Melet, A., Marques-Soares, C., Schoch, G. A., Macherey, A. C., Jaouen, M., Dansette, P. M., et al. (2004). Analysis of human cytochrome P450 2C8 substrate specificity using a substrate pharmacophore and site-directed mutants. Biochemistry 43:15379–15392.
  • Mo, S. L., Zhou, Z. W., Yang, L. P., Wei, M. Q., Zhou, S. F. (2009). New insights into the structural features and functional relevance of human cytochrome P450 2C9. Part I. Curr Drug Metab 10:1075–1126.
  • Moreno, R. L., Goosen, T., Kent, U. M., Chung, F. L., Hollenberg, P. F. (2001). Differential effects of naturally occurring isothiocyanates on the activities of cytochrome P450 2E1 and the mutant P450 2E1 T303A. Arch Biochem Biophys 391:99–110.
  • Nebert, D. W., Russell, D. W. (2002). Clinical importance of the cytochromes P450. Lancet 360:1155–1162.
  • Nelson, D. R. (1999). Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369:1–10.
  • Ortiz de Montellano, P. R. (2005). Cytochrome P450: structure, mechanism, and biochemistry. New York: Kluwer Academic/Plenum.
  • Porubsky, P. R., Battaile, K. P., Scott, E. E. (2010). Human cytochrome P450 2E1 structures with fatty acid analogs reveal a previously unobserved binding mode. J Biol Chem 285:22282–22290.
  • Porubsky, P. R., Meneely, K. M., Scott, E. E. (2008). Structures of human cytochrome P-450 2E1. Insights into the binding of inhibitors and both small molecular weight and fatty acid substrates. J Biol Chem 283:33698–33707.
  • Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., Kraut, J. (1985). The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 260:16122–16130.
  • Poulos, T. L., Finzel, B. C., Howard, A. J. (1987). High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195:687–700.
  • Rao, S., Aoyama, R., Schrag, M., Trager, W. F., Rettie, A., Jones, J. P. (2000). A refined 3-dimensional QSAR of cytochrome P450 2C9: computational predictions of drug interactions. J Med Chem 43:2789–2796.
  • Rendic, S. (2002). Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 34:83–448.
  • Rowland, P., Blaney, F. E., Smyth, M. G., Jones, J. J., Leydon, V. R., Oxbrow, A. K., et al. (2006b). Crystal structure of human cytochrome P450 2D6. J Biol Chem 281:7614–7622.
  • Sansen, S., Yano, J. K., Reynald, R. L., Schoch, G. A., Griffin, K. J., Stout, C. D., et al. (2007). Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 282:14348–14355.
  • Schleinkofer, K., Sudarko, Winn, P. J, Lüdemann, S. K., Wade, R. C. (2005). Do mammalian cytochrome P450s show multiple ligand access pathways and ligand channelling? EMBO Rep 6:584–589.
  • Schoch, G. A., Yano, J. K., Sansen, S., Dansette, P. M., Stout, C. D., Johnson, E. F. (2008). Determinants of cytochrome P450 2C8 substrate binding: structures of complexes with montelukast, troglitazone, felodipine, and 9-cis-retinoic acid. J Biol Chem 283:17227–17237.
  • Schoch, G. A., Yano, J. K., Wester, M. R., Griffin, K. J., Stout, C. D., Johnson, E. F. (2004). Structure of human microsomal cytochrome P450 2C8. Evidence for a peripheral fatty acid binding site. J Biol Chem 279:9497–9503.
  • Scott, E. E., Halpert, J. R. (2005). Structures of cytochrome P450 3A4. Trends Biochem Sci 30:5–7.
  • Sevrioukova, I. F., Poulos, T. L. (2010). Structure and mechanism of the complex between cytochrome P450 3A4 and ritonavir. Proc Natl Acad Sci U S A 107:18422–18427.
  • Shah, M. B., Pascual, J., Zhang, Q., Stout, C. D., Halpert, J. R. (2011). Structures of cytochrome P450 2B6 bound to 4-benzylpyridine and 4-(4-nitrobenzyl)pyridine: insight into inhibitor binding and rearrangement of active site side chains. Mol Pharmacol 80:1047–1055.
  • Strobl, G. R., von Kruedener, S., Stöckigt, J., Guengerich, F. P., Wolff, T. (1993). Development of a pharmacophore for inhibition of human liver cytochrome P-450 2D6: molecular modeling and inhibition studies. J Med Chem 36:1136–1145.
  • Tracy, T. S. (2003). Atypical enzyme kinetics: their effect on in vitro-in vivo pharmacokinetic predictions and drug interactions. Curr Drug Metab 4:341–346.
  • Tracy, T. S. (2006). Atypical cytochrome p450 kinetics: implications for drug discovery. Drugs R D 7:349–363.
  • Tu, Y., Deshmukh, R., Sivaneri, M., Szklarz, G. D. (2008). Application of molecular modeling for prediction of substrate specificity in cytochrome P450 1A2 mutants. Drug Metab Dispos 36:2371–2380.
  • Wang, A., Savas, U., Stout, C. D., Johnson, E. F. (2011). Structural characterization of the complex between alpha-naphthoflavone and human cytochrome P450 1B1. J Biol Chem 286:5736–5743.
  • Wang, J. F., Chou, K. C. (2010). Molecular modeling of cytochrome P450 and drug metabolism. Curr Drug Metab 11:342–346.
  • Wang, Q., Halpert, J. R. (2002). Combined three-dimensional quantitative structure-activity relationship analysis of cytochrome P450 2B6 substrates and protein homology modeling. Drug Metab Dispos 30:86–95.
  • Wester, M. R., Yano, J. K., Schoch, G. A., Yang, C., Griffin, K. J., Stout, C. D., et al. (2004). The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution. J Biol Chem 279:35630–35637.
  • Wienkers, L. C., Heath, T. G. (2005). Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 4:825–833.
  • Williams, P. A., Cosme J., Vinkovic, D. M., Ward, A., Angove, H. C., Day, P. J., et al. (2004). Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305:683–686.
  • Williams, P. A., Cosme, J., Ward, A., Angove, H. C., Matak Vinković, D., Jhoti, H. (2003). Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468.
  • Wishart, D. S. (2007). Improving early drug discovery through ADME modelling: an overview. Drugs R D 8:349–362.
  • Wu, B. (2011). Substrate inhibition kinetics in drug metabolism reactions. Drug Metab Rev 43:440–456.
  • Yano, J. K., Denton, T. T., Cerny, M. A., Zhang, X., Johnson, E. F., Cashman, J. R. (2006). Synthetic inhibitors of cytochrome P-450 2A6: inhibitory activity, difference spectra, mechanism of inhibition, and protein cocrystallization. J Med Chem 49:6987–7001.
  • Yano, J. K., Hsu, M. H., Griffin, K. J., Stout, C. D., Johnson, E. F. (2005). Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nat Struct Mol Biol 12:822–823.
  • Yano, J. K., Wester, M. R., Schoch, G. A., Griffin, K. J., Stout, C. D., Johnson, E. F. (2004). The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J Biol Chem 279:38091–38094.
  • Yuan, R., Madani, S., Wei, X. X., Reynolds, K., Huang, S. M. (2002). Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab Dispos 30:1311–1319.
  • Yun, C. H., Kim, K. H., Calcutt, M. W., Guengerich, F. P. (2005). Kinetic analysis of oxidation of coumarins by human cytochrome P450 2A6. J Biol Chem 280:12279–12291.
  • Zhou, S. F., Wang, B., Yang, L. P., Liu, J. P. (2010). Structure, function, regulation, and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev 42:268–354.
  • Zhou, S. F., Yang, L. P., Zhou, Z. W., Liu, Y. H., Chan, E. (2009). Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. AAPS J 11:481–494.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.