407
Views
38
CrossRef citations to date
0
Altmetric
Review Article

The effects of engineered nanoparticles on pulmonary immune homeostasis

, , , , , & show all
Pages 176-190 | Received 19 Sep 2013, Accepted 18 Oct 2013, Published online: 25 Nov 2013

References

  • Akbarzadeh A, Samiei M, Davaran S. (2012). Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144--156
  • Alves Cardoso D, Jansen JA, Leeuwenburgh SC. (2012). Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J Biomed Mater Res B Appl Biomater 100:2316–2326
  • Ambalavanan N, Stanishevsky A, Bulger A, et al. (2013). Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice. Am J Physiol Lung Cell Mol Physiol 304:L152–L161
  • Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. (2010). Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 62:59–82
  • Andrade F, Videira M, Ferreira D, Sarmento B. (2011). Nanocarriers for pulmonary administration of peptides and therapeutic proteins. Nanomedicine (Lond) 6:123–141
  • Asharani PV, Hande MP, Valiyaveettil S. (2009a). Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65
  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. (2009b). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290
  • Baker GL, Gupta A, Clark ML, et al. (2008). Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci 101:122–131
  • Banerjee S, Kahn MG, Wong SS. (2003). Rational chemical strategies for carbon nanotube functionalization. Chemistry 9:1898–1908
  • Barceloux DG. (1999). Zinc. J Toxicol Clin Toxicol 37:279–292
  • Barik TK, Sahu B, Swain V. (2008). Nanosilica-from medicine to pest control. Parasitol Res 103:253–258
  • Bernard BK, Osheroff MR, Hofmann A, Mennear JH. (1990). Toxicology and carcinogenesis studies of dietary titanium dioxide-coated mica in male and female Fischer 344 rats. J Toxicol Environ Health 29:417–429
  • Bhol KC, Schechter PJ. (2007). Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Dig Dis Sci 52:2732–2742
  • Blank F, Stumbles PA, Seydoux E, et al. (2013). Size-dependent uptake of particles by pulmonary APC populations and trafficking to regional lymph nodes. Am J Respir Cell Mol Biol 49:66--77
  • Bonner JC. (2011). Carbon nanotubes as delivery systems for respiratory disease: Do the dangers outweigh the potential benefits? Expert Rev Respir Med 5:779–787
  • Brown SD, Nativo P, Smith JA, et al. (2010). Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132:4678–4684
  • Brunner TJ, Wick P, Manser P, et al. (2006). In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381
  • Bur M, Henning A, Hein S, et al. (2009). Inhalative nanomedicine – Opportunities and challenges. Inhal Toxicol 21:137–143
  • Card JW, Zeldin DC, Bonner JC, Nestmann ER. (2008). Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 295:L400–L411
  • Chang H, Ho CC, Yang CS, et al. (2013). Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation. Exp Toxicol Pathol 65:887–896
  • Chen X, Schluesener HJ. (2008). Nanosilver: A nanoproduct in medical application. Toxicol Lett 176:1–12
  • Chen YS, Hung YC, Liau I, Huang GS. (2009). Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4:858–864
  • Chittasupho C, Xie SX, Baoum A, et al. (2009). ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur J Pharm Sci 37:141–150
  • Cho WS, Cho M, Kim SR, et al. (2009). Pulmonary toxicity and kinetic study of Cy5.5-conjugated superparamagnetic iron oxide nanoparticles by optical imaging. Toxicol Appl Pharmacol 239:106–115
  • Cho WS, Choi M, Han BS, et al. (2007a). Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol Lett 175:24–33
  • Cho WS, Duffin R, Poland CA, et al. (2012). Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology 6:22–35
  • Cho YW, Park SA, Han TH, et al. (2007b). In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: Mechanisms, key factors, and their implications. Biomaterials 28:1236–1247
  • Choi M, Cho M, Han BS, et al. (2010). Chitosan nanoparticles show rapid extrapulmonary tissue distribution and excretion with mild pulmonary inflammation to mice. Toxicol Lett 199:144–152
  • Coccini T, Roda E, Barni S, et al. (2012). Long-lasting oxidative pulmonary insult in rat after intratracheal instillation of silica nanoparticles doped with cadmium. Toxicology 302:203–211
  • Condon TV, Sawyer RT, Fenton MJ, Riches DW. (2011). Lung dendritic cells at the innate-adaptive immune interface. J Leukoc Biol 90:883–895
  • Connor EE, Mwamuka J, Gole A, et al. (2005). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327
  • De Jong WH, Borm PJ. (2008). Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 3:133–149
  • De Jong WH, Hagens WI, Krystek P, et al. (2008). Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912--1919
  • Derakhshandeh K, Fathi, S. (2012). Role of chitosan nanoparticles in the oral absorption of Gemcitabine. Int J Pharm 437:172–177
  • Dhand, R. (2004). New frontiers in aerosol delivery during mechanical ventilation. Respir Care 49:666–677
  • Ding N, Kunugita N, Ichinose T, et al. (2011). Intratracheal administration of fullerene nanoparticles activates splenic CD11b+ cells. J Hazard Mater 194:324–330
  • Dorney J, Bonnier F, Garcia A, et al. (2012). Identifying and localizing intracellular nanoparticles using Raman spectroscopy. Analyst 137:1111–1119
  • dos Santos T, Varela J, Lynch I, et al. (2011). Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One 6:e24438
  • Dostert C, Petrilli V, Van Bruggen R, et al. (2008). Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677
  • Downs TR, Crosby ME, Hu T, et al. (2012). Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not. Mutat Res 745:38–50
  • Edwards DA, Dunbar C. (2002). Bioengineering of therapeutic aerosols. Annu Rev Biomed Eng 4:93–107
  • Edwards DA, Hanes J, Caponetti G, et al. (1997). Large porous particles for pulmonary drug delivery. Science 276:1868–1871
  • El-Sayed IH, Huang X, El-Sayed MA. (2005). Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett 5:829–834
  • Ema M, Tanaka J, Kobayashi N, et al. (2012). Genotoxicity evaluation of fullerene C60 nanoparticles in a comet assay using lung cells of intratracheally instilled rats. Regul Toxicol Pharmacol 62:419–424
  • Fakhar-e-Alam M, Ali SM, Ibupoto ZH, et al. (2012). Sensitivity of A-549 human lung cancer cells to nanoporous zinc oxide conjugated with Photofrin. Lasers Med Sci 27:607–614
  • Farboud ES, Nasrollahi SA, Tabbakhi Z. (2011). Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: In vitro and in vivo studies. Int J Nanomedicine 6:611–617
  • Fifis T, Gamvrellis A, Crimeen-Irwin B, et al. (2004). Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173:3148–3154
  • Filipe P, Silva JN, Silva R, et al. (2009). Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Physiol 22:266–275
  • Foldvari M, Bagonluri M. (2008). Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine 4:183–200
  • Fraga S, Faria H, Soares ME, et al. (2013). Influence of the surface coating on the cytotoxicity, genotoxicity and uptake of gold nanoparticles in human HepG2 cells. J Appl Toxicol 33:1111–1119
  • Fujita K, Morimoto Y, Endoh S, et al. (2010). Identification of potential biomarkers from gene expression profiles in rat lungs intratracheally instilled with C60 fullerenes. Toxicology 274:34–41
  • Genter MB, Newman NC, Shertzer HG, et al. (2012). Distribution and systemic effects of intranasally administered 25 nm silver nanoparticles in adult mice. Toxicol Pathol 40:1004–1013
  • George S, Pokhrel S, Xia T, et al. (2010). Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4:15–29
  • Gosens I, Post JA, de la Fonteyne LJ, et al. (2010). Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol 7:37--47
  • Grassian VH, O'Shaughnessy PT, Adamcakova-Dodd A, et al. (2007). Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115:397–402
  • Guidi P, Nigro M, Bernardeschi M, et al. (2013). Genotoxicity of amorphous silica particles with different structure and dimension in human and murine cell lines. Mutagenesis 28:171–180
  • Han G, Ghosh P, Rotello VM. (2007). Functionalized gold nanoparticles for drug delivery. Nanomedicine (Lond) 2:113–123
  • Hardy CL, Lemasurier JS, Belz GT, et al. (2012). Inert 50-nm polystyrene nanoparticles that modify pulmonary dendritic cell function and inhibit allergic airway inflammation. J Immunol 188:1431–1441
  • Hardy CL, Lemasurier JS, Mohamud R, et al. (2013). Differential uptake of nanoparticles and microparticles by pulmonary APC subsets induces discrete immunological imprints. J Immunol 191:5278–5290
  • Heng BC, Zhao X, Xiong S, et al. (2010). Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chem Toxicol 48:1762–1766
  • Hirn S, Semmler-Behnke M, Schleh C, et al. (2011). Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 77:407–416
  • Hoet PH, Bruske-Hohlfeld I, Salata OV. (2004). Nanoparticles – known and unknown health risks. J Nanobiotechnology 2:12--26
  • Holt PG, Strickland DH, Wikstrom ME, Jahnsen FL. (2008). Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol 8:142–152
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. (2007). Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2:681–693
  • Huang X, Peng X, Wang Y, et al. (2010). A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 4:5887–5896
  • Hussain A, Arnold JJ, Khan MA, Ahsan F. (2004). Absorption enhancers in pulmonary protein delivery. J Control Release 94:15–24
  • Hussain S, Vanoirbeek JA, Luyts K, et al. (2011). Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. Eur Respir J 37:299–309
  • Hussain SM, Hess KL, Gearhart JM, et al. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983
  • Inoue K, Yanagisawa R, Koike E, et al. (2010). Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: Possible role of oxidative stress. Free Radic Biol Med 48:924–934
  • Janeway CA Jr, Bottomly K. (1994). Signals and signs for lymphocyte responses. Cell 76:275–285
  • Janeway CA, Jr, Medzhitov R. (2002). Innate immune recognition. Annu Rev Immunol 20:197–216
  • Jang S, Park JW, Cha HR, et al. (2012). Silver nanoparticles modify VEGF signaling pathway and mucus hypersecretion in allergic airway inflammation. Int J Nanomedicine 7:1329–1343
  • Jensen DK, Jensen LB, Koocheki S, et al. (2012). Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. J Control Release 157:141–148
  • John AE, Lukacs NW, Berlin AA, et al. (2003). Discovery of a potent nanoparticle P-selectin antagonist with anti-inflammatory effects in allergic airway disease. FASEB J 17:2296–2298
  • Johnston HJ, Hutchison G, Christensen FM, et al. (2010). A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346
  • Kalishwaralal K, Banumathi E, Ram Kumar Pandian S, et al. (2009). Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces 73:51–57
  • Kao YY, Chen YC, Cheng TJ, et al. (2012). Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125:462–472
  • Karlson TD, Kong YY, Hardy CL, et al. (2013). The signalling imprints of nanoparticle uptake by bone marrow derived dendritic cells. Methods 60:275–283
  • Karlsson HL, Cronholm P, Gustafsson J, Moller L. (2008). Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732
  • Kaur G, Narang RK, Rath G, Goyal AK. (2012). Advances in pulmonary delivery of nanoparticles. Artif Cells Blood Substit Immobil Biotechnol 40:75–96
  • Keijzer C, Spiering R, Silva AL, et al. (2013). PLGA nanoparticles enhance the expression of retinaldehyde dehydrogenase enzymes in dendritic cells and induce FoxP3 T-cells in vitro. J Control Release 168:35–40
  • Kim YH, Fazlollahi F, Kennedy IM, et al. (2010). Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am J Respir Crit Care Med 182:1398–1409
  • Klippstein R, Pozo D. (2010). Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine 6:523–529
  • Konduru NV, Tyurina YY, Feng W, et al. (2009). Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo. PLoS One 4:e4398
  • Kumar M, Behera AK, Lockey RF, et al. (2002). Intranasal gene transfer by chitosan-DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection. Hum Gene Ther 13:1415–1425
  • Kumar M, Kong X, Behera AK, et al. (2003). Chitosan IFN-gamma-pDNA nanoparticle (CIN) therapy for allergic asthma. Genet Vaccines Ther 1:3--12
  • Kunzmann A, Andersson B, Vogt C, et al. (2011). Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol 253:81–93
  • Lai SK, Suk JS, Pace A, et al. (2011). Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials 32:6285–6290
  • Lambrecht BN, Hammad H. (2009). Biology of lung dendritic cells at the origin of asthma. Immunity 31:412–424
  • Larsen ST, Roursgaard M, Jensen KA, Nielsen GD. (2010). Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol 106:114–117
  • Latimer P, Menchaca M, Snyder RM, et al. (2009). Aerosol delivery of liposomal formulated paclitaxel and vitamin E analog reduces murine mammary tumor burden and metastases. Exp Biol Med (Maywood) 234:1244–1252
  • Lee DW, Shirley SA, Lockey RF, Mohapatra SS. (2006). Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Respir Res 7:112
  • Li B, Ze Y, Sun Q, et al. (2013). Molecular mechanisms of nanosized titanium dioxide-induced pulmonary injury in mice. PLoS One 8:e55563
  • Madani SY, Shabani F, Dwek MV, Seifalian AM. (2013). Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment. Int J Nanomedicine 8:941–950
  • Madl AK, Pinkerton KE. (2009). Health effects of inhaled engineered and incidental nanoparticles. Crit Rev Toxicol 39:629–658
  • Maiseyeu A, Badgeley MA, Kampfrath T, et al. (2012). In vivo targeting of inflammation-associated myeloid-related protein 8/14 via gadolinium immunonanoparticles. Arterioscler Thromb Vasc Biol 32:962–970
  • Mano SS, Kanehira K, Sonezaki S, Taniguchi A. (2012). Effect of polyethylene glycol modification of TiO2 nanoparticles on cytotoxicity and gene expressions in human cell lines. Int J Mol Sci 13:3703–3717
  • Marches R, Mikoryak C, Wang RH, et al. (2011). The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells. Nanotechnology 22:095101 (1--10)
  • Martinez Gomez JM, Fischer S, Csaba N, et al. (2007). A protective allergy vaccine based on CpG- and protamine-containing PLGA microparticles. Pharm Res 24:1927–1935
  • Matsuo Y, Ishihara T, Ishizaki J, et al. (2009). Effect of betamethasone phosphate loaded polymeric nanoparticles on a murine asthma model. Cell Immunol 260:33–38
  • McCarthy J, Inkielewicz-Stepniak I, Corbalan JJ, Radomski MW. (2012). Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: Protective effects of fisetin. Chem Res Toxicol 25:2227–2235
  • Minigo G, Scholzen A, Tang CK, et al. (2007). Poly-L-lysine-coated nanoparticles: A potent delivery system to enhance DNA vaccine efficacy. Vaccine 25:1316–1327
  • Mitchell LA, Gao J, Wal RV, et al. (2007). Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100:203–214
  • Monforte V, Ussetti P, Lopez R, et al. (2009). Nebulized liposomal amphotericin B prophylaxis for Aspergillus infection in lung transplantation: Pharmacokinetics and safety. J Heart Lung Transplant 28:170–175
  • Mossman BT, Churg A. (1998). Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157:1666–1680
  • Mottram PL, Leong D, Crimeen-Irwin B, et al. (2007). Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: Formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 4:73–84
  • Muhlfeld C, Rothen-Rutishauser B, Blank F, et al. (2008). Interactions of nanoparticles with pulmonary structures and cellular responses. Am J Physiol Lung Cell Mol Physiol 294:L817–L829
  • Nafee N, Taetz S, Schneider M, et al. (2007). Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: Effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine 3:173–183
  • Napierska D, Rabolli V, Thomassen LC, et al. (2012a). Oxidative stress induced by pure and iron-doped amorphous silica nanoparticles in subtoxic conditions. Chem Res Toxicol 25:828–837
  • Napierska D, Thomassen LC, Lison D, et al. (2010). The nanosilica hazard: Another variable entity. Part Fibre Toxicol 7:39--70
  • Napierska D, Thomassen LC, Vanaudenaerde B, et al. (2012b). Cytokine production by co-cultures exposed to monodisperse amorphous silica nanoparticles: The role of size and surface area. Toxicol Lett 211:98–104
  • Nassimi M, Schleh C, Lauenstein HD, et al. (2010). A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur J Pharm Biopharm 75:107–116
  • Nemmar A, Hoet PH, Vandervoort P, et al. (2007). Enhanced peripheral thrombogenicity after lung inflammation is mediated by platelet-leukocyte activation: Role of P-selectin. J Thromb Haemost 5:1217–1226
  • Nemmar A, Hoylaerts MF, Hoet PH, et al. (2003). Size effect of intratracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicol Appl Pharmacol 186:38–45
  • Nicod LP. (1999). Pulmonary defence mechanisms. Respiration 66:2–11
  • Oberdorster G, Oberdorster E, Oberdorster J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839
  • Ogami A, Yamamoto K, Morimoto Y, et al. (2011). Pathological features of rat lung following inhalation and intratracheal instillation of C60 fullerene. Inhal Toxicol 23:407–416
  • Oikonomou N, Harokopos V, Zalevsky J, et al. (2006). Soluble TNF mediates the transition from pulmonary inflammation to fibrosis. PLoS One 1:e108
  • Oves M, Khan MS, Zaidi A, et al. (2013). Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One 8:e59140
  • Pan Z, Lee W, Slutsky L, et al. (2009). Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5:511–520
  • Park EJ, Bae E, Yi J, et al. (2010a). Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30:162–168
  • Park EJ, Cho WS, Jeong J, et al. (2009). Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology 259:113–121
  • Park EJ, Choi K, Park K. (2011). Induction of inflammatory responses and gene expression by intratracheal instillation of silver nanoparticles in mice. Arch Pharm Res 34:299–307
  • Park EJ, Kim H, Kim Y, et al. (2010b). Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 275:65–71
  • Park HS, Kim KH, Jang S, et al. (2010c). Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles. Int J Nanomedicine 5:505–515
  • Pastorino F, Di Paolo D, Piccardi F, et al. (2008). Enhanced antitumor efficacy of clinical-grade vasculature-targeted liposomal doxorubicin. Clin Cancer Res 14:7320–7329
  • Patton JS, Byron PR. (2007). Inhaling medicines: Delivering drugs to the body through the lungs. Nat Rev Drug Discov 6:67–74
  • Pilcer G, Amighi K. (2010). Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 392:1–19
  • Pirooznia N, Hasannia S, Lotfi AS, Ghanei M. (2012). Encapsulation of alpha-1 antitrypsin in PLGA nanoparticles: In vitro characterization as an effective aerosol formulation in pulmonary diseases. J Nanobiotechnol 10:20--34
  • Prato M, Kostarelos K, Bianco A. (2008). Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68
  • Randall TD. (2010). Pulmonary dendritic cells: Thinking globally, acting locally. J Exp Med 207:451–454
  • Reddy ST, van der Vlies AJ, Simeoni E, et al. (2007). Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25:1159–1164
  • Regner M, Culley F, Fontannaz P, et al. (2004). Safety and efficacy of immune-stimulating complex-based antigen delivery systems for neonatal immunisation against respiratory syncytial virus infection. Microbes Infect 6:666–675
  • Rossi EM, Pylkkanen L, Koivisto AJ, et al. (2010). Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Part Fibre Toxicol 7:35--48
  • Roursgaard M, Poulsen SS, Kepley CL, et al. (2008). Polyhydroxylated C60 fullerene (fullerenol) attenuates neutrophilic lung inflammation in mice. Basic Clin Pharmacol Toxicol 103:386–388
  • Roursgaard M, Poulsen SS, Poulsen LK, et al. (2010). Time-response relationship of nano and micro particle induced lung inflammation. Quartz as reference compound. Hum Exp Toxicol 29:915–933
  • Ruenraroengsak P, Novak P, Berhanu D, et al. (2012). Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. Nanotoxicology 6:94–108
  • Ryan JJ, Bateman HR, Stover A, et al. (2007). Fullerene nanomaterials inhibit the allergic response. J Immunol 179:665–672
  • Safari D, Marradi M, Chiodo F, et al. (2012). Gold nanoparticles as carriers for a synthetic Streptococcus pneumoniae type 14 conjugate vaccine. Nanomedicine (Lond) 7:651–662
  • San Gil F, Turner B, Walker MJ, et al. (1999). Contribution of adjuvant to adaptive immune responses in mice against Actinobacillus pleuropneumoniae. Microbiology 145 (Pt 9):2595–2603
  • Sandberg WJ, Lag M, Holme JA, et al. (2012). Comparison of non-crystalline silica nanoparticles in IL-1beta release from macrophages. Part Fibre Toxicol 9:32--44
  • Satoh M, Takayanagi I. (2006). Pharmacological studies on fullerene (C60), a novel carbon allotrope, and its derivatives. J Pharmacol Sci 100:513–518
  • Sayes CM, Liang F, Hudson JL, et al. (2006a). Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142
  • Sayes CM, Marchione AA, Reed KL, Warheit DB. (2007). Comparative pulmonary toxicity assessments of C60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7:2399–2406
  • Sayes CM, Wahi R, Kurian PA, et al. (2006b). Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185
  • Scholl I, Kopp T, Bohle B, Jensen-Jarolim E. (2006). Biodegradable PLGA particles for improved systemic and mucosal treatment of Type I allergy. Immunol Allergy Clin North Am 26:349–364, ix
  • Schulz M, Ma-Hock L, Brill S, et al. (2012). Investigation on the genotoxicity of different sizes of gold nanoparticles administered to the lungs of rats. Mutat Res 745:51–57
  • Semmler-Behnke M, Kreyling WG, Lipka J, et al. (2008). Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4:2108–2111
  • Shen S, Liu Y, Huang P, Wang J. (2009). In vitro cellular uptake and effects of Fe3O4 magnetic nanoparticles on HeLa cells. J Nanosci Nanotechnol 9:2866–2871
  • Shi H, Magaye R, Castranova V, Zhao J. (2013). Titanium dioxide nanoparticles: A review of current toxicological data. Part Fibre Toxicol 10:15--47
  • Shoenfelt J, Mitkus RJ, Zeisler R, et al. (2009). Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter. J Leukoc Biol 86:303–312
  • Shvedova AA, Kisin ER, Mercer R, et al. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708
  • Sonavane G, Tomoda K, Makino K. (2008). Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf B Biointerfaces 66:274--280
  • Song KS, Sung JH, Ji JH, et al. (2012). Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats. Nanotoxicology 7:169–180
  • Sperling RA, Rivera Gil P, Zhang F, et al. (2008). Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908
  • Stebounova LV, Adamcakova-Dodd A, Kim JS, et al. (2011). Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 8:5--16
  • Steinmuller C, Franke-Ullmann G, Lohmann-Matthes ML, Emmendorffer A. (2000). Local activation of nonspecific defense against a respiratory model infection by application of interferon-gamma: Comparison between rat alveolar and interstitial lung macrophages. Am J Respir Cell Mol Biol 22:481–490
  • Suh WH, Suslick KS, Stucky GD, Suh YH. (2009). Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87:133–170
  • Sung JC, Pulliam BL, Edwards DA. (2007). Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25:563–570
  • Sung JH, Ji JH, Park JD, et al. (2011). Subchronic inhalation toxicity of gold nanoparticles. Part Fibre Toxicol 8:16--33
  • Sung JH, Ji JH, Yoon JU, et al. (2008). Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20:567–574
  • Szacilowski K, Macyk W, Drzewiecka-Matuszek A, et al. (2005). Bioinorganic photochemistry: Frontiers and mechanisms. Chem Rev 105:2647–2694
  • Szalay B, Tatrai E, Nyiro G, et al. (2012). Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. J Appl Toxicol 32:446–453
  • Ungaro F, d'Angelo I, Miro A, et al. (2012). Engineered PLGA nano- and micro-carriers for pulmonary delivery: Challenges and promises. J Pharm Pharmacol 64:1217–1235
  • Vardharajula S, Ali SZ, Tiwari PM, et al. (2012). Functionalized carbon nanotubes: Biomedical applications. Int J Nanomedicine 7:5361–5374
  • Verma NK, Crosbie-Staunton K, Satti A, et al. (2013). Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnol 11:1--12
  • Vigneshwaran N, Kathe AA, Varadarajan PV, et al. (2007). Functional finishing of cotton fabrics using silver nanoparticles. J Nanosci Nanotechnol 7:1893–1897
  • Vranic S, Garcia-Verdugo I, Darnis C, et al. (2013). Internalization of SiO2 nanoparticles by alveolar macrophages and lung epithelial cells and its modulation by the lung surfactant substitute Curosurerreg®. Environ Sci Pollut Res Int 20:2761–2770
  • Wang H, Zou C, Tian C, et al. (2011). A novel gas ionization sensor using Pd nanoparticle-capped ZnO. Nanoscale Res Lett 6:534--541
  • Wang JJ, Sanderson BJ, Wang H. (2007). Cytotoxicity and genotoxicity of ultrafine crystalline SiO2 particulate in cultured human lymphoblastoid cells. Environ Mol Mutagen 48:151–157
  • Wang W, Zhu R, Xie Q, et al. (2012). Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomed 7:3667–3677
  • Wang X, Xu W, Kong X, et al. (2009). Modulation of lung inflammation by vessel dilator in a mouse model of allergic asthma. Respir Res 10:66--73
  • Wang X, Xu W, Mohapatra S, et al. (2008). Prevention of airway inflammation with topical cream containing imiquimod and small interfering RNA for natriuretic peptide receptor. Genet Vaccines Ther 6:7--15
  • Wang X, Zang JJ, Wang H, et al. (2010). Pulmonary toxicity in mice exposed to low and medium doses of water-soluble multi-walled carbon nanotubes. J Nanosci Nanotechnol 10:8516–8526
  • Warheit DB, Webb TR, Colvin VL, et al. (2007a). Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: Toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci 95:270–280
  • Warheit DB, Webb TR, Reed KL, et al. (2007b). Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 230:90–104
  • Wiesenthal A, Hunter L, Wang S, et al. (2011). Nanoparticles: Small and mighty. Int J Dermatol 50:247–254
  • Wissinger E, Goulding J, Hussell T. (2009). Immune homeostasis in the respiratory tract and its impact on heterologous infection. Semin Immunol 21:147–155
  • Wong KK, Ng A, Chen XY, et al. (2012). Effect of ZnO nanoparticle properties on dye-sensitized solar cell performance. ACS Appl Mater Interfaces 4:1254–1261
  • Xia T, Kovochich M, Brant J, et al. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807
  • Xiang SD, Scalzo-Inguanti K, Minigo G, et al. (2008). Promising particle-based vaccines in cancer therapy. Expert Rev Vaccines 7:1103–1119
  • Xiang SD, Scholzen A, Minigo G, et al. (2006). Pathogen recognition and development of particulate vaccines: Does size matter? Methods 40:1–9
  • Xie J, Liu G, Eden HS, et al. (2011). Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44:883–892
  • Yang M, Yamamoto H, Kurashima H, et al. (2012). Design and evaluation of inhalable chitosan-modified poly (DL-lactic-co-glycolic acid) nanocomposite particles. Eur J Pharm Sci 47:235–243
  • Yang S, Damiano MG, Zhang H, et al. (2013). Biomimetic, synthetic HDL nanostructures for lymphoma. Proc Natl Acad Sci U S A 110:2511–2516
  • Yazdi AS, Guarda G, Riteau N, et al. (2010). Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci U S A 107:19449–19454
  • Yuan Y, Ding J, Xu J, et al. (2010). TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application. J Nanosci Nanotechnol 10:4868–4874
  • Zagorovsky K, Chan WC. (2013). A plasmonic DNAzyme strategy for point-of-care genetic detection of infectious pathogens. Angew Chem Int Ed Engl 52:3168–3171
  • Zakharian TY, Seryshev A, Sitharaman B, et al. (2005). A fullerene-paclitaxel chemotherapeutic: Synthesis, characterization, and study of biological activity in tissue culture. J Am Chem Soc 127:12508–12509
  • Zaru M, Sinico C, De Logu A, et al. (2009). Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: In vitro and in vivo evaluation. J Liposome Res 19:68–76
  • Zhang H, Wang C, Chen B, Wang X. (2012). Daunorubicin-TiO2 nanocomposites as a “smart” pH-responsive drug delivery system. Int J Nanomed 7:235–242

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.