33
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Modulation of Quinol/Quinone-Thioether Toxicity by Intramolecular Detoxication

Pages 93-106 | Published online: 22 Sep 2008

References

  • Sies H., Ketterer B. Glutathione Conjugation. Mechanisms and Biological Significance. Academic Press, San Diego 1988
  • Anders M. W., Dekant W. Advances in Pharmacology. Conjugation-Dependent Carcinogenicity and Toxicology of Foreign Compounds. Academic Press, New York 1994; Vol. 27
  • Monks T. J., Lau S. S. Toxicology of quinone-thioethers. CRC Crit. Rev. Toxicol. 1992; 22: 243–270
  • Monks T. J., Lau S. S. Glutathione conjugation as a mechanism for the transport of reactive metabolites. Advances in Pharmacology, Vol. 27: Conjugation-Dependent Carcinogenicity and Toxicology of Foreign Compounds, M. W. Anders, W. Dekant. Academic Press, New York 1994; 183–210
  • Eyer P., Kiese M. Biotransformation of 4-dimethylaminophenol: Reaction with glutathione, and some properties of the reaction products. Chem.-Biol. Interact. 1976; 14: 165–178
  • Wefers H., Sies H. Hepatic low-level chemiluminesence during redox cycling of menadione and the menadione-glutathione conjugate: Relation to glutathione and NAD(P)H: quinone reductase (DT-diaphorase) activity. Arch. Biochem. Biophys. 1983; 224: 568–578
  • Ross D., Larsson R., Norbeck K., Ryhage R., Moldeus P. Characterization and mechanism of formation of reactive products formed during peroxidase-catalysed oxidation of /j-phenetidine. Mol. Pharmacol 1985; 27: 277–288
  • Potter D. W., Miller D. W., Hinson J. A. Horseradish peroxidase-catalysed oxidation of acetaminophen to intermediates that form polymers or conjugate with glutathione. Mol. Pharmacol. 1986; 29: 155–162
  • Wolff S. P., Spector A. Pro-oxidant activation of ocular reduc-tants. 2. Lens epithelial cell cytotoxicity of a dietary quinone is associated with a stable free radical formed with glutathione. in vitro, Exp. Eye Res 1987; 45: 791–801
  • Takahashi N., Schreiber J., Fischer V., Mason R. P. Formation of glutathione-conjugated semiquinones by the reaction of quino-nes with glutathione: An ESR study. Arch. Biochem. Biophys. 1987; 252: 41–48
  • Rao D. N. R., Takahashi N., Mason R. P. Characterization of a glutathione conjugate of the 1,4-benzosemiquinone-free radical formed in rat hepatocytes. J. Biol. Chem. 1988; 263: 17981–17986
  • Brown P. C., Dulik D. M., Jones T. W. The toxicity of menadione (2-methyl-l,4-naphthoquinone) and two thioether conjugates studied with isolated renal epithelial cells. Arch. Biochem. Biophys. 1991; 285: 187–196
  • Chung H., Harvey R. G., Armstrong R. N., Jarabak J. Poly-cyclic aromatic hydrocarbon quinones and glutathione thioethers as substrates and inhibitors of the human placental NADP-linked 15-hydroxyprostaglandin dehydrogenase. J. Biol. Chem. 1987; 262: 12448–12451
  • van Ommen B., Besten C. Den, Rutten A. C. M., Ploemen J. H. T. M., Voo R. M. E., Muller M., van Bladeren P. J. Active site-directed irreversible inhibition of glutathione 5-trans-ferases by the glutathione conjugate of tetrachloro-l,4-benzoquinone. J. Biol. Chem. 1988; 263: 12939–12942
  • van Ommen B., Ploemen J. H. T. M., Ruven H. J., Vos R. M. E., Boggards J. J. P., van Berkel W. J. H., van Bladeren P. J. Studies on the active site of rat glutathione S-transferase isoenzyme 4–4. Chemical modification by tetrachloro-l,4-benzoquinone and its glutathione conjugate. Eur. J. Biochem. 1989; 181: 423–429
  • Vos R. M. E., van Ommen B., Hoekstein M. S. J., de Goede J. H. M., van Bladeren P. J. Irreversible inhibition of rat hepatic glutathione 5-transferase isoenzymes by a series of structurally related quinones. Chem.-Biol. Interact. 1989; 71: 381–392
  • Buffinton G. D., Ollinger K., Brunmark A., Cadenas E. DT-diaphorase-catalysed reduction of 1,4-naphthoquinone derivatives and glutathionyl-quinone conjugates. Biochem. J. 1989; 257: 561–571
  • van Ommen B., Ploemen J. P., Bogaards J. J. P., Monks T. J., Lau S. S., van Bladeren P. J. Irreversible inhibition of rat glutathione 5-transferase 1–1 by quinones and their glutathione conjugates: Structure-activity relationship and mechanism. Biochem. J. 1991; 276: 661–666
  • Jarabak J. Polycyclic aromatic hydrocarbon quinone-mediated oxidation reduction cycling catalyzed by a human placental NADPH-linked carbonyl reductase. Arch. Biochem. Biophys. 1991; 291: 334–338
  • Jarabak J., Harvey R. G. Studies on three reductases which have polycyclic aromatic hydrocarbons as substrates. Arch. Biochem. Biophys. 1993; 303: 394–401
  • Monks T. J., Lau S. S., Highet R. J., Gillette J. R. Glutathione conjugates of 2-bromohydroquinone are nephrotoxic. Drug Metab. Dispos. 1985; 13: 553–559
  • Monks T. J., Highet R. J., Lau S. S. 2-Bromo-(diglutathion-5-yl)hydroquinone nephrotoxicity. Physiological, biochemical and electrochemical determinants. Mol. Pharmacol. 1988; 34: 492–500
  • Lau S. S., Hill B. A., Highet R. J., Monks T. J. Sequential oxidation and glutathione addition to 1,4-benzoquinone: Correlation of toxicity with increased glutathione substitution. Mol. Pharmacol. 1988; 34: 829–836
  • Redegeld F. A. M., Hofman G. A., van der Loo P. G. F., Koster A. S., Noordhoek J. Nephrotoxicity of the GSH conjugate of menadione (2-methyl-1,4-naphthoquinone) in the isolated perfused rat kidney. Role of metabolism by γ-glutamyl transpeptidase and probenecid-sensitive transport. J. Pharmacol. Exp. Ther. 1989; 256: 665–669
  • Lau S. S., Jones T. W., Highet R. J., Hill B. A., Monks T. J. Differences in the localization and extent of the renal proximal tubular necrosis caused by mercapturic acid and glutathione conjugates of menadione and 1,4-naphthoquinone. Toxicol. Appl. Pharmacol. 1990; 104: 334–350
  • Fowler L. M., Moore R. D., Foster J. R., Lock E. A. Nephrotoxicity of 4-aminophenol glutathione conjugate. Human Exp. Toxicol. 1991; 10: 451–459
  • Mertens J. J. W. M., Temmink J. H. M., van Bladeren P. J., Jones T. W., Lo H. H.-, Lau S. S., Monks T. J. Inhibition of γ-glutamyl transpeptidase potentiates the nephrotoxicity of glutathione conjugated chlorohydroquinones. Toxicol. Appl. Pharmacol. 1991; 110: 45–60
  • Monks T. J., Jones T. W., Hill B. A., Lau S. S. Nephrotoxicity of 2-bromo-(cystein-5-yl)hydroquinone and 2-bromo-(N-acetylcystein-S-yl)hydroquinone thioethers. Toxicol. Appl. Pharmacol. 1991; 111: 279–298
  • Klos C., Koob M., Kramer C., Dekant W. p-Aminophenol nephrotoxicity: Biosynthesis of toxic glutathione conjugates. Toxicol. Appl. Pharmacol. 1992; 115: 98–106
  • Larsson R., Boutin J., Moldeus P. Peroxidase-catalysed metabolic activation of xenobiotics. Metabolism of Xenobiotics, J. W. Gorrod, H. Oelschlager, J. Caldwell. Taylor and Francis, New York 1988; 43–50
  • Canales P. L., Kleiner H. E., Monks T. J., Lau S. S. Formation of 8-hydroxy-deoxygaunonsine by quinol-thioethers. Toxicologist 1993; 13: 202, abstract
  • Andrews J. E., Rogers J. M., Ebron-McCoy M., Logsdon T. R., Monks T. J., Lau S. S. Developmental toxicity of 2-bromo-hydroquinone (BHQ) and BHQ-glutathione conjugates in vivo and in whole embryo culture. Toxicol. Appl. Pharm. 1993; 120: 1–7
  • Curthoys N. P. Extracellular Catabolism of Glutathione. Research Monographs in Cell and Tissue Physiology, Vol. 14: Mammalian Ectoenzymes, A. J. Kenny, A. J. Turner. Elsevier Science Publishers, Amsterdam 1987; 249–264
  • Lau S. S., Monks T. J. The in vivo disposition of 2-bromo-[14C]-hydroquinone and the effect of γ-glutamyl transpeptidase inhibition. Toxicol. Appl. Pharmacol. 1990; 103: 121–132
  • Monks T. J., Lo H. H.-, Lau S. S. Oxidation and acetylation as determinants of 2-bromo-(cystein-5-yl)hydroquinone mediated nephrotoxicity. Chem. Res. Toxicol. 1994; 7: 495–502
  • Hill B. A., Monks T. J., Lau S. S. Metabolism of 2-(gluta-thion-5-yl)hydroquinone and 2,3,5-(triglutathion-5-yl)hydroquinone in the in situ perfused rat kidney: Relationship to nephrotoxicity. Toxicol. Appl. Pharmacol. 1994; 129: 121–132
  • Allen L., Meek R. A., Yunis A. The inhibition of γ-glutamyl transpeptidase from human pancreatic carcinoma cells by (αS,5S)-α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125;NSC-163501). Res. Commun. Chem. Pathol. Pharmacol. 1980; 27: 175–182
  • Stole E., Seddon A. P., Wellner D., Meister A. Identification of a highly reactive threonine residue at the active site of γ-glutamyl transpeptidase. Proc. Natl. Acad. Sci. USA 1990; 87: 1706–1709
  • Tate S. S., Meister A. Serine-borate complex as a transition-state inhibitor of γ-glutamyl transpeptidase. Proc. Natl. Acad. Sci. USA 1978; 45: 4806–4809
  • Elce J. S. Active-site amino acid residues in γ-glutamyltransferase and the nature of the γ-glutamyl-enzyme bond. Biochem. J. 1980; 185: 473–481
  • Allison R. D. γ-Glutamyl transpeptidase: Kinetics and mechanism. Meth. Enzymol. 1985; 113: 419–437
  • Szewczuk A., Connell G. E. The reaction of iodoacetamide with the active center of γ-glutamyl transpeptidase. Biochim. Biophys. Acta 1965; 105: 352–367
  • Schasteen C. S., Curthoys N. P., Reed D. J. The binding mechanism of glutathione and the anti-tumor drug (aS,5S)-a-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125; NSC-163501) to γ-glutamyltransferase. Biochem. Biophys. Res. Commun. 1983; 112: 564–570
  • Fushiki T., Iwami K., Yasumoto K., Iwai K. Evidence for an essential arginyl residue in bovine milk γ-glutamyltransferase. J. Biochem. (Tokyo) 1983; 93: 795–800
  • Monks T. J., Highet R. J., Lau S. S. Oxidative cyclization, 1,4-benzothiazine formation and dimerization of 2-bromo-3-(gluta-thion-5-yl)hydroquinone. Mol. Pharmacol. 1990; 38: 121–127
  • Haenen H. E. M. G., Rogmans P., Temmink J. H. M., van Bladeren P. J. Differential toxicity of the two thioether conjugates of menadione in confluent monolayers of rat renal proximal tubular cells. Toxicol. In Vitro 1994; 8: 207–214
  • Lau S. S., Jones T. W., Sioco R., Hill B. A., Pinon R. K., Monks T. J. Species differences in renal γ-glutamyl transpeptidase activity do not correlate with susceptibility to 2-bromo-(diglutathion-5-yl)hydroquinone mediated nephrotoxicity. Toxicology 1990; 64: 291–311
  • Kleiner H. E., Monks T. J., Lau S. S. JV-Acetylation/N-deacetylation as a determinant of 2,3,5-(triglutathion-S-yl)hydroquinone mediated nephrotoxicity. Toxicologist 1993; 13: 241, abstract
  • Duffel M. W., Jakoby W. B. Cysteine 5-conjugate N-acetyl-transferase from rat kidney microsomes. Mol. Pharmacol. 1982; 21: 444–448

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.