Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 37, 2013 - Issue 4
91
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Elevated Serum Levels of Cell Death Circulating Biomarkers, M30 and M65, In Patients with β-Thalassemia Major

, , &
Pages 404-410 | Received 02 Nov 2012, Accepted 16 Jan 2013, Published online: 19 Apr 2013

REFERENCES

  • Rund D, Rachmilewitz E. β-Thalassemia. N Engl J Med. 2005;353(11):1135–1146.
  • Modell B, Khan M, Darlison M. Survival in β-thalassaemia major in the UK: data from the UK Thalassaemia Register. Lancet. 2000;355(9220):2051–2052.
  • Olivieri NF. The β-thalassemias. N Engl J Med. 1999;341(2):99–109.
  • Isom HC, McDevitt EI, Moon MS. Elevated hepatic iron: a confounding factor in chronic hepatitis C. Biochim Biophys Acta. 2009;1790(7):650–662.
  • Wang Y, Wu M, Al-Rousan R, et al. Iron-induced cardiac damage: role of apoptosis and deferasirox intervention. J Pharmacol Exp Ther. 2011;336(1):56–63.
  • Arvapalli RK, Paturi S, Laurino JP, et al. Deferasirox decreases age-associated iron accumulation in the aging F344XBN rat heart and liver. Cardiovasc Toxicol. 2010;10(2):108–116.
  • Al-Rousan RM, Rice KM, Katta A, et al. Deferasirox protects against iron-induced hepatic injury in Mongolian gerbil. Transl Res. 2011;157(6):368–377.
  • Leers MP, Kölgen W, Björklund V, et al. Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J Pathol. 1999;187(5):567–572.
  • Yilmaz Y, Dolar E, Ulukaya E, et al. Soluble forms of extracellular cytokeratin 18 may differentiate simple steatosis from nonalcoholic steatohepatitis. World J Gastroenterol. 2007;13(6):837–844.
  • Caulin C, Salvesen GS, Oshima RG. Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol. 1997;138(6):1379–1394.
  • Ku NO, Liao J, Omary MB. Apoptosis generates stable fragments of human type I keratins. J Biol Chem. 1997;272(52):33197–33203.
  • Kramer G, Erdal H, Mertens HJ, et al. Differentiation between cell death modes using measurements of different soluble forms of extracellular cytokeratin 18. Cancer Res. 2004;64(5):1751–1756.
  • Luft T, Conzelmann M, Benner A, et al. Serum cytokeratin-18 fragments as quantitative markers of epithelial apoptosis in liver and intestinal graft-versus-host disease. Blood. 2007;110(13):4535–4542.
  • Whittaker P, Hines FA, Robl MG, Dunkel VC. Histopathological evaluation of liver, pancreas, spleen, and heart from iron-overloaded Sprague-Dawley rats. Toxicol Pathol. 1996;24(5):558–563.
  • Eaton JW, Qian M. Molecular bases of cellular iron toxicity. Free Radic Biol Med. 2002;32(9):833–840.
  • Linder S, Havelka AM, Ueno T, Shoshan MC. Determining tumor apoptosis and necrosis in patient serum using cytokeratin 18 as a biomarker. Cancer Lett. 2004;214(1):1–9.
  • Ditzel HJ, Strik MC, Larsen MK, et al. Cancer-associated cleavage of cytokeratin 8/18 heterotypic complexes exposes a neoepitope in human adenocarcinomas. J Biol Chem. 2002;277(24):21712–21722.
  • Cao XH, Zhao SS, Liu DY, et al. ROS-Ca(2+) is associated with mitochondria permeability transition pore involved in surfactin-induced MCF-7 cells apoptosis. Chem Biol Interact. 2011;190(1):16–27.
  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 2000;192(7):1001–1014.
  • Breckenridge DG, Xue D. Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr Opin Cell Biol. 2004;16(6):647–652.
  • Green DR,Reed JC. Mitochondria and apoptosis. Science. 1998;281(5381):1309–1312.
  • Mohamad N, Gutiérrez A, Núñez M, et al. Mitochondrial apoptotic pathways. Biocell. 2005;29(2):149–161.
  • Spierings D, McStay G, Saleh M, et al. Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science. 2005;310(5745):66–67.
  • Verma SP, Singhal A. Low levels of the pesticide, delta-hexachlorocyclohexane, lyses human erythrocytes and alters the organization of membrane lipids and proteins as revealed by Raman spectroscopy. Biochim Biophys Acta. 1991;1070(1):265–273.
  • Jaeschke H, Lemasters JJ. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology. 2003;125(4):1246–1257.
  • Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072.
  • Green DR, Oberst A, Dillon CP, Weinlich R, Salvesen GS. RIPK-dependent necrosis and its regulation by caspases: a mystery in five acts. Mol Cell. 2011;44(1):9–16.
  • Galluzzi L, Kroemer G. Necroptosis: a specialized pathway of programmed necrosis. Cell. 2008;135(7):1063–1065.
  • Kronenberger B, Wagner M, Herrmann E, et al. Apoptotic cytokeratin 18 neoepitopes in serum of patients with chronic hepatitis C. J Viral Hepat. 2005;12(3):307–314.
  • Kronenberger B, Rüster B, Lee JH, et al. Hepatocellular proliferation in patients with chronic hepatitis C and persistently normal or abnormal aminotransferase levels. J Hepatol. 2000;33(4):640–647.
  • Bantel H, Lügering A, Poremba C, et al. Caspase activation correlates with the degree of inflammatory liver injury in chronic hepatitis C virus infection. Hepatology. 2001;34(4 Pt 1):758–767.
  • Calabrese F, Pontisso P, Pettenazzo E, et al. Liver cell apoptosis in chronic hepatitis C correlates with histological but not biochemical activity or serum HCV-RNA levels. Hepatology. 2000;31(5):1153–1159.
  • Pratt DS, Kaplan MM. Evaluation of liver: laboratory tests. In: Schiff ER, Sorrell MF, Maddrey WC, Eds. Schiff’s Diseases of the Liver, 6th ed. Philadelphia: Lippincott Williams & Wilkins. 2003:221–255.
  • Kountouras J, Zavos C, Chatzopoulos D. Apoptosis in hepatitis C. J Viral Hepatol. 2003;10(5):335–342.
  • Zeuzem S, Schmidt JM, Lee JH, Rüster B, Roth WK. Effect of interferon α on the dynamics of hepatitis C virus turnover in vivo. Hepatology. 1996;23(2):366–371.
  • Zhu L, Wang L, Wang X, et al. Hepatic deletion of Smad7 in mouse leads to spontaneous liver dysfunction and aggravates alcoholic liver injury. PLoS One. 2011;6(2):e17415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.