Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 39, 2015 - Issue 1
578
Views
38
CrossRef citations to date
0
Altmetric
Review Article

Cardiomyopathy Associated with Iron Overload: How Does Iron Enter Myocytes and What are the Implications for Pharmacological Therapy?

, , &
Pages 9-17 | Received 30 Apr 2014, Accepted 14 Jul 2014, Published online: 09 Jan 2015

References

  • Andrews NC. Disorders of iron metabolism. N Engl J Med. 1999;341(26):1986–1995
  • Emerit J, Beaumont C, Trivin F. Iron metabolism, free radicals, and oxidative injury. Biomed Pharmacother. 2001;55(6):333–339
  • Esposito BP, Breuer W, Sirankapracha P, et al. Labile plasma iron in iron overload: Redox activity and susceptibility to chelation. Blood. 2003;10(7):2670–2677
  • Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol. 2005;202(2):199–211
  • Kremastinos DT, Farmakis D, Aessopos A, et al. β-Thalassemia cardiomyopathy: History, present considerations, and future perspectives. Circ Heart Fail. 2013;3(3):451–458
  • Pennell DJ, Udelson JE, Arai AE, et al. Cardiovascular function and treatment in β-thalassemia major: A consensus statement from the American Heart Association. Circulation. 2013;128(3):281–308
  • Das SK, Oudit GY. Voltage-gated Ca2+ channels as key mediators of iron-transport and iron-overload cardiomyopathy: L-type vs. T-type Ca+ channels. Eur J Haematol. 2012;88(6):476–477
  • Fleming MD, Romano MA, Su MA, et al. Nramp2 is mutated in the anemic Belgrade (b) rat: Evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci USA. 1998;95(3):1148–1153
  • Gunshin H, Mackenzie B, Berger UV, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;38(6641):482–488
  • Aisen P. Transferrin receptor 1. Int J Biochem Cell Biol. 2004;36(11):2137–2143
  • Roy CN, Blemings KP, Deck KM, et al. Increased IRP1 and IRP2 RNA binding activity accompanies a reduction of the labile iron pool in HFE-expressing cells. J Cell Physiol. 2002;190(2):218–226
  • Kumfu S, Chattipakorn S, Chinda K, et al. T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice. Eur J Haematol. 2012;88(6):535–548
  • Kumfu S, Chattipakorn S, Srichairatanakool S, et al. T-type calcium channel as a portal of iron uptake into cardiomyocytes of β-thalassemic mice. Eur J Haematol. 2011;86(2):156–166
  • Lopin KV, Gray IP, Obejero-Paz CA, et al. Fe2+ block and permeation of CaV3.1 (α1G) T-type calcium channels: Candidate mechanism for non-transferrin-mediated Fe2+ influx. Mol Pharmacol. 2012;82(6):1194–1204
  • Oudit GY, Sun H, Trivieri MG, et al. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med. 2003;9(9):1187–1194
  • Oudit GY, Trivieri MG, Khaper N, et al. Role of L-type Ca2+ channels in iron transport and iron-overload cardiomyopathy. J Mol Med. 2006;84(5):349–364
  • Tsushima RG, Wickenden AD, Bouchard RA, et al. Modulation of iron uptake in heart by L-type Ca2+ channel modifiers: possible implications in iron overload. Circ Res. 1999;84(11):1302–1309
  • Anderson LJ, Westwood MA, Holden S, et al. Myocardial iron clearance during reversal of siderotic cardiomyopathy with intravenous desferrioxamine: A prospective study using T2* cardiovascular magnetic resonance. Br J Haematol. 2004;127(3):348–355
  • Gujja P, Rosing DR, Tripodi DJ, et al. Iron overload cardiomyopathy: Better understanding of an increasing disorder. J Am Coll Cardiol. 2010;56(13):1001–1012
  • Murphy CJ, Oudit GY. Iron-overload cardiomyopathy: Pathophysiology, diagnosis, and treatment. J Card Fail. 2010;16(11):888–900
  • Brissot P, Ropert M, Le Lan C, et al. Non-transferrin bound iron: A key role in iron overload and iron toxicity. Biochim Biophys Acta. 2012;1820(3):403–410
  • Link G, Pinson A, Hershko C. Heart cells in culture: A model of myocardial iron overload and chelation. J Lab Clin Med. 1985;106(2):147–153
  • Randell EW, Parkes JG, Olivieri NF, et al. Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron. J Biol Chem. 1994;269(23):16046–16053
  • Hershko C, Link G, Cabantchik I. Pathophysiology of iron overload. Ann N Y Acad Sci. 1998;850:191–201
  • Horwitz LD, Rosenthal EA. Iron-mediated cardiovascular injury. Vasc Med. 1999;4(2):93–99
  • Lekawanvijit S, Chattipakorn N. Iron overload thalassemic cardiomyopathy: Iron status assessment and mechanisms of mechanical and electrical disturbance due to iron toxicity. Can J Cardiol. 2009;25(4):213–218
  • Shander A, Cappellini MD, Goodnough LT. Iron overload and toxicity: The hidden risk of multiple blood transfusions. Vox Sang. 2009;97(3):185–197
  • Wood JC, Enriquez C, Ghugre N, et al. Physiology and pathophysiology of iron cardiomyopathy in thalassemia. Ann N Y Acad Sci. 2005;1054:386–395
  • Bartfay WJ, Bartfay E. Iron-overload cardiomyopathy: Evidence for a free radical — mediated mechanism of injury and dysfunction in a murine model. Biol Res Nurs. 2000;2(1):49–59
  • Gao X, Campian JL, Qian M, et al. Mitochondrial DNA damage in iron overload. J Biol Chem. 2009;284(8):4767–4775
  • Gao X, Qian M, Campian JL, et al. Mitochondrial dysfunction may explain the cardiomyopathy of chronic iron overload. Free Radic Biol Med. 2010;49(3):401–407
  • Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: An update and review. Biochim Biophys Acta. 2006;1757(5–6):509–517
  • Thummasorn S, Kumfu S, Chattipakorn S, et al. Granulocyte-colony stimulating factor attenuates mitochondrial dysfunction induced by oxidative stress in cardiac mitochondria. Mitochondrion. 2011;11(3):457–466
  • Kumfu S, Chattipakorn S, Fucharoen S, et al. Ferric iron uptake into cardiomyocytes of β-thalassemic mice is not through calcium channels. Drug Chem Toxicol. 2013;36(3):329–334
  • Parkes JG, Olivieri NF, Templeton DM. Characterization of Fe2+ and Fe3+ transport by iron-loaded cardiac myocytes. Toxicology. 1997;117(2–3):141–151
  • Shvartsman M, Kikkeri R, Shanzer A, et al. Non-transferrin-bound iron reaches mitochondria by a chelator-inaccessible mechanism: Biological and clinical implications. Am J Physiol Cell Physiol. 2007;293(4):C1383–C1394
  • Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: Molecular control of mammalian iron metabolism. Cell. 2004;117(3):285–297
  • Fernandes JL, Sampaio EF, Fertrin K, et al. Amlodipine reduces cardiac iron overload in patients with thalassemia major: A pilot trial. Am J Med. 2013;126(9):834–837
  • Sugishita K, Asakawa M, Usui S, et al. A case of iron overload cardiomyopathy: Beneficial effects of iron chelating agent and calcium channel blocker on left ventricular dysfunction. Int Heart J. 2009;50(6):829–838
  • Ke Y, Chen YY, Chang YZ, et al. Post-transcriptional expression of DMT1 in the heart of rat. J Cell Physiol. 2003;196(1):124–130
  • Davis MT, Bartfay WJ. Ebselen decreases oxygen free radical production and iron concentrations in the hearts of chronically iron-overloaded mice. Biol Res Nurs. 2004;6(1):37–45
  • Huang B, Qin D, Deng L, et al. Reexpression of T-type Ca2+ channel gene and current in post-infarction remodeled rat left ventricle. Cardiovasc Res. 2000;46(3):442–449
  • Martinez ML, Heredia MP, Delgado C. Expression of T-type Ca2+ channels in ventricular cells from hypertrophied rat hearts. J Mol Cell Cardiol. 1999;31(9):1617–1625
  • Liuzzi JP, Aydemir F, Nam H, et al. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA. 2006;103(37):13612–13617
  • Nam H, Wang CY, Zhang L, et al. ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: Implications for tissue iron uptake in iron-related disorders. Haematologica. 2013;98(7):1049–1057
  • Mainous AG III, Weinberg ED, Diaz VA, et al. Calcium channel blocker use and serum ferritin in adults with hypertension. Biometals. 2012;25(3):563–568
  • Parkes JG, Liu Y, Sirna JB, et al. Changes in gene expression with iron loading and chelation in cardiac myocytes and non-myocytic fibroblasts. J Mol Cell Cardiol. 2000;32(2):233–246
  • Liu Y, Parkes JG, Templeton DM. Differential accumulation of non-transferrin-bound iron by cardiac myocytes and fibroblasts. J Mol Cell Cardiol. 2003;35(5):505–514
  • Zhao N, Sun Z, Mao Y, et al. Myocardial iron metabolism in the regulation of cardiovascular diseases in rats. Cell Physiol Biochem. 2010;25(6):587–594
  • Rodriguez A, Hilvo M, Kytomaki L, et al. Effects of iron loading on muscle: Genome-wide mRNA expression profiling in the mouse. BMC Genomics. 2007;8:379
  • Qian ZM, Chang YZ, Leung G, et al. Expression of ferroportin1, hephaestin and ceruloplasmin in rat heart. Biochim Biophys Acta. 2007;1772(5):527–532
  • Chen YY, Xia Q, Qian ZM. [Developmental expression and regulation of divalent metal transporter 1 in rat heart]. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2003;32(2):131–136
  • Kim DW, Kim KY, Choi BS, et al. Regulation of metal transporters by dietary iron, and the relationship between body iron levels and cadmium uptake. Arch Toxicol. 2007;81(5):327–334
  • Crowe S, Bartfay WJ. Amlodipine decreases iron uptake and oxygen free radical production in the heart of chronically iron overloaded mice. Biol Res Nurs. 2002;3(4):189–197
  • Musumeci M, Maccari S, Sestili P, et al. The C57BL/6 genetic background confers cardioprotection in iron-overloaded mice. Blood Transfus. 2013;11(1):88–93
  • Otto-Duessel M, Brewer C, Wood JC. Interdependence of cardiac iron and calcium in a murine model of iron overload. Transl Res. 2011;157(2):92–99

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.