1,155
Views
46
CrossRef citations to date
0
Altmetric
Review Article

Nanostructure-based drug delivery systems for brain targeting

, , , , &
Pages 387-411 | Received 21 Mar 2011, Accepted 22 Jul 2011, Published online: 28 Sep 2011

References

  • Cardoso FL, Brites D, Brito MA. (2010). Looking at the blood-brain barrier: Molecular anatomy and possible investigation approaches. Brain Res Rev, 64:328–363.
  • Iqbal U, Abulrob A, Stanimirovic DB. (2011). Integrated platform for brain imaging and drug delivery across the blood-brain barrier. Methods Mol Biol, 686:465–481.
  • Begley DJ. (2004). Delivery of therapeutic agents to the central nervous system: The problems and the possibilities. Pharmacol Ther, 104:29–45.
  • Karasova JZ, Pohanka M, Musilek K, Zemek F, Kuca K. (2010). Passive diffusion of acetylcholinesterase oxime reactivators through the blood-brain barrier: Influence of molecular structure. Toxicol in Vitro, 24:1838–1844.
  • Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ et al. (2002). Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther, 303:1029–1037.
  • Sanjuan VM, Alvarez MG, Alvarez IG, Bermejo M. (2010). Drug penetration across the blood–brain barrier: An overview. Nanomedicine, 1:535–562.
  • Levin VA. (1980). Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem, 23:682–684.
  • Bodor N, Buchwald P. (2003). Brain-targeted drug delivery: Experiences to date. Am J Drug Targ, 1:13– 26.
  • MacKay JA, Deen DF, Szoka FC Jr . (2005). Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating. Brain Res, 1035:139–153.
  • Campbell M, Ozaki E, Humphries P. (2010). Systemic delivery of therapeutics to neuronal tissues: A barrier modulation approach. Expert Opin Drug Deliv, 7:859–869.
  • Matsuhisa K, Kondoh M, Takahashi A, Yagi K. (2009). Tight junction modulator and drug delivery. Expert Opin Drug Deliv, 6:509–515.
  • Davis SS. (1997). Biomedical applications of nanotechnology–implications for drug targeting and gene therapy. Trends Biotechnol, 15:217–224.
  • Temsamani J, Scherrmann JM, Rees AR, Kaczorek M. (2000). Brain drug delivery technologies: Novel approaches for transporting therapeutics. Pharm Sci Technol Today, 3:155–162.
  • Misra A, Ganesh S, Shahiwala A, Shah SP. (2003). Drug delivery to the central nervous system: A review. J Pharm Pharm Sci, 6:252–273.
  • Pardridge WM, Golden PL, Kang YS, Bickel U. (1997). Brain microvascular and astrocyte localization of P-glycoprotein. J Neurochem, 68:1278–1285.
  • Goldmann E. (1913). Vitalfarbung am zentralnervensystem. Abh Konigl Preuss Akad Wiss, 1:1–60.
  • Abbott NJ, Rönnbäck L, Hansson E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 7:41–53.
  • Hawkins BT, Davis TP. (2005). The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev, 57:173–185.
  • Reese TS, Karnovsky MJ. (1967). Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol, 34:207–217.
  • Brightman MW, Reese TS. (1969). Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol, 40:648–677.
  • Shen DD, Artru AA, Adkison KK. (2004). Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Deliv Rev, 56:1825–1857.
  • Redzic ZB, Segal MB. (2004). The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev, 56:1695–1716.
  • Motl S, Zhuang Y, Waters CM, Stewart CF. (2006). Pharmacokinetic considerations in the treatment of CNS tumours. Clin Pharmacokinet, 45:871–903.
  • Schlageter KE, Molnar P, Lapin GD, Groothuis DR. (1999). Microvessel organization and structure in experimental brain tumors: Microvessel populations with distinctive structural and functional properties. Microvasc Res, 58:312–328.
  • Ghersi JE, Leninge BM, Suleman G, Siest G, Minn A. (1994). Localisation of drug-metabolizing enzyme activities to blood–brain interfaces and circumventricular organs. J Neurochem, 62:1089–1096.
  • Lindvall M, Hardebo JE, Owman C. (1980). Barrier mechanisms for neutrotransmitter monoamines in the choroid plexus. Acta Physiol Scand, 108:215–221.
  • Strazielle N, Ghersi-Egea JF. (1999). Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. J Neurosci, 19:6275–6289.
  • Bauer B, Hartz AM, Lucking JR, Yang X, Pollack GM, Miller DS. (2008). Coordinated nuclear receptor regulation of the efflux transporter, Mrp2, and the phase-II metabolizing enzyme, GSTpi, at the blood-brain barrier. J Cereb Blood Flow Metab, 28:1222–1234.
  • Kalaria RN, Mitchell MJ, Harik SI. (1988). Monoamine oxidases of the human brain and liver. Brain, 111 (Pt 6):1441–1451.
  • Sura P, Sura R, Enayetallah AE, Grant DF. (2008). Distribution and expression of soluble epoxide hydrolase in human brain. J Histochem Cytochem, 56:551–559.
  • Ghersi-Egea JF, Strazielle N, Murat A, Jouvet A, Buénerd A, Belin MF. (2006). Brain protection at the blood-cerebrospinal fluid interface involves a glutathione-dependent metabolic barrier mechanism. J Cereb Blood Flow Metab, 26:1165–1175.
  • Richard K, Hume R, Kaptein E, Stanley EL, Visser TJ, Coughtrie MW. (2001). Sulfation of thyroid hormone and dopamine during human development: Ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung, and brain. J Clin Endocrinol Metab, 86:2734–2742.
  • Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO et al. (2008). ABC transporters, cytochromes P450 and their main transcription factors: Expression at the human blood-brain barrier. J Neurochem, 107:1518–1528.
  • Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA et al. (2009). Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol, 77:897–909.
  • Cornford EM, Hyman S. (1999). Blood-brain barrier permeability to small and large molecules. Adv Drug Deliv Rev, 36:145–163.
  • Pardridge WM. (1999). Blood-brain barrier biology and methodology. J Neurovirol, 5:556–569.
  • Tsuji A, Tamai I (1999). Carrier-mediated or specialized transport of drugs across the blood-brain barrier. Adv Drug Deliv Rev, 36:277–290.
  • Segal MB. (2000). The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell Mol Neurobiol, 20:183–196.
  • Spector R. (2000). Drug transport in the mammalian central nervous system: Multiple complex systems. A critical analysis and commentary. Pharmacology, 60:58–73.
  • Graff CL, Pollack GM. (2004). Drug transport at the blood-brain barrier and the choroid plexus. Curr Drug Metab, 5:95–108.
  • Lee G, Dallas S, Hong M, Bendayan R. (2001). Drug transporters in the central nervous system: Brain barriers and brain parenchyma considerations. Pharmacol Rev, 53:569–596.
  • Dean M, Annilo T. (2005). Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet, 6:123–142.
  • Juliano RL, Ling V. (1976). A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta, 455:152–162.
  • Cordon CC, Brien JP, Casals D, Rittman GL, Biedler JL, Melamed MR, Bertino JR.(1989). Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood–brain barrier sites. Proc Natl Acad Sci, 86 (2):695–698.
  • Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. (1989). Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: Evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J Histochem Cytochem, 37:159–164.
  • Sun H, Dai H, Shaik N, Elmquist WF. (2003). Drug efflux transporters in the CNS. Adv Drug Deliv Rev, 55:83–105.
  • Demeule A, Regina J, Jodoin A, Laplante C, Dagenais F, Berthelet A, Beliveau R. (2002). Drug transport to the brain: Key roles for the efflux pump P-glycoprotein in the blood–brain barrier. Vasc Pharmacol, 38:339–348.
  • Schinkel AH, Jonker JW. (2003). Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: An overview. Adv Drug Deliv Rev, 55:3–29.
  • Schinkel AH. (1999). P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev, 36:179–194.
  • Sawchuk RJ, Elmquist WF. (2000). Microdialysis in the study of drug transporters in the CNS. Adv Drug Deliv Rev, 45:295–307.
  • Potschka H, Fedrowitz M, Löscher W. (2002). P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood-brain barrier: Evidence from microdialysis experiments in rats. Neurosci Lett, 327:173–176.
  • Bendayan M. (2002). Morphological and cytochemical aspects of capillary permeability. Microsc Res Tech, 57:327–349.
  • Shapiro AB, Fox K, Lam P, Ling V. (1999). Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone. Evidence for a third drug-binding site. Eur J Biochem, 259:841–850.
  • Rajagopal A, Simon SM. (2003). Subcellular localization and activity of multidrug resistance proteins. Mol Biol Cell, 14:3389–3399.
  • Borst P, Evers R, Kool M, Wijnholds J. (2000). A family of drug transporters: The multidrug resistance-associated proteins. J Natl Cancer Inst, 92:1295–1302.
  • Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W et al. (2001). Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia, 42:1501–1506.
  • Aronica E, Gorter JA, Ramkema M, Redeker S, Ozbas-Gerçeker F, van Vliet EA et al. (2004). Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy. Epilepsia, 45:441–451.
  • Török M, Huwyler J, Drewe J, Gutmann H, Fricker G. (1998). Transport of the β-lactam antibiotic benzylpenicillin and the dipeptide glycylsarcosine by brain capillary endothelial cells in vitro. Drug Metab Dispos, 26:1144–1148.
  • Potschka H, Fedrowitz M, Löscher W. (2001). P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. Neuroreport, 12:3557–3560.
  • Potschka H, Fedrowitz M, Löscher W. (2003). Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther, 306:124–131.
  • Eisenblätter T, Hüwel S, Galla HJ. (2003). Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood-brain barrier. Brain Res, 971:221–231.
  • Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann JM. (2004). Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res, 64:3296–3301.
  • Cooray HC, Blackmore CG, Maskell L, Barrand MA. (2002). Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport, 13:2059–2063.
  • Gao B, Stieger B, Noé B, Fritschy JM, Meier PJ. (1999). Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary endothelium and choroid plexus epithelium of rat brain. J Histochem Cytochem, 47:1255–1264.
  • Hagenbuch B, Meier PJ. (2004). Organic anion transporting polypeptides of the OATP/ SLC21 family: Phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch, 447:653–665.
  • Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA. (2004). The ABCs of solute carriers: Physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch, 447:465–468.
  • Bronger H, König J, Kopplow K, Steiner HH, Ahmadi R, Herold-Mende C et al. (2005). ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res, 65:11419–11428.
  • Huber RD, Gao B, Sidler Pfändler MA, Zhang-Fu W, Leuthold S, Hagenbuch B et al. (2007). Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol, Cell Physiol, 292:C795–C806.
  • Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH et al. (2008). Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology, 149:6251–6261 [Reference 70].
  • Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH et al. (2008). Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology, 149:6251–6261.
  • Rizwan AN, Burckhardt G. (2007). Organic anion transporters of the SLC22 family: Biopharmaceutical, physiological, and pathological roles. Pharm Res, 24:450–470.
  • Alebouyeh M, Takeda M, Onozato ML, Tojo A, Noshiro R, Hasannejad H et al. (2003). Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J Pharmacol Sci, 93:430–436.
  • Koepsell H, Lips K, Volk C. (2007). Polyspecific organic cation transporters: Structure, function, physiological roles, and biopharmaceutical implications. Pharm Res, 24:1227–1251.
  • Jonker JW, Schinkel AH. (2004). Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther, 308:2–9.
  • Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K. (2006). Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther, 319:879–886.
  • Sweet DH, Miller DS, Pritchard JB. (2001). Ventricular choline transport: A role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem, 276:41611–41619.
  • Kido Y, Tamai I, Ohnari A, Sai Y, Kagami T, Nezu J et al. (2001). Functional relevance of carnitine transporter OCTN2 to brain distribution of L-carnitine and acetyl-L-carnitine across the blood-brain barrier. J Neurochem, 79:959–969.
  • Inano A, Sai Y, Nikaido H, Hasimoto N, Asano M, Tsuji A et al. (2003). Acetyl-L-carnitine permeability across the blood-brain barrier and involvement of carnitine transporter OCTN2. Biopharm Drug Dispos, 24:357–365.
  • Miecz D, Januszewicz E, Czeredys M, Hinton BT, Berezowski V, Cecchelli R et al. (2008). Localization of organic cation/carnitine transporter (OCTN2) in cells forming the blood-brain barrier. J Neurochem, 104:113–123.
  • Koepsell H, Endou H. (2004). The SLC22 drug transporter family. Pflugers Arch, 447:666–676.
  • del Amo EM, Urtti A, Yliperttula M. (2008). Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci, 35:161–174.
  • Uchino H, Kanai Y, Kim DK, Wempe MF, Chairoungdua A, Morimoto E et al. (2002). Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): Insights into the mechanisms of substrate recognition. Mol Pharmacol, 61:729–737.
  • Verrey F. (2003). System L: Heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch, 445:529–533.
  • Su TZ, Feng MR, Weber ML. (2005). Mediation of highly concentrative uptake of pregabalin by L-type amino acid transport in Chinese hamster ovary and Caco-2 cells. J Pharmacol Exp Ther, 313:1406–1415.
  • Tsuji A. (2005). Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. Neurorx, 2:54–62.
  • Pierre K, Pellerin L. (2005). Monocarboxylate transporters in the central nervous system: Distribution, regulation and function. J Neurochem, 94:1–14.
  • Morris ME, Felmlee MA. (2008). Overview of the proton-coupled MCT (SLC16A) family of transporters: Characterization, function and role in the transport of the drug of abuse γ-hydroxybutyric acid. AAPS J, 10:311–321.
  • Tsuji A, Saheki A, Tamai I, Terasaki T. (1993). Transport mechanism of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors at the blood-brain barrier. J Pharmacol Exp Ther, 267:1085–1090.
  • Bhattacharya I, Boje KM. (2004). GHB (γ-hydroxybutyrate) carrier-mediated transport across the blood-brain barrier. J Pharmacol Exp Ther, 311:92–98.
  • Deguchi Y, Nozawa K, Yamada S, Yokoyama Y, Kimura R. (1997). Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis: Possible involvement of the monocarboxylic acid transport system. J Pharmacol Exp Ther, 280:551–560.
  • Fischer W, Praetor K, Metzner L, Neubert RH, Brandsch M. (2008). Transport of valproate at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells: Mechanism and substrate specificity. Eur J Pharm Biopharm, 70:486–492.
  • Cornford EM, Diep CP, Pardridge WM. (1985). Blood-brain barrier transport of valproic acid. J Neurochem, 44:1541–1550.
  • Adkison KD, Shen DD. (1996). Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. J Pharmacol Exp Ther, 276:1189–1200.
  • Kong W, Engel K, Wang J. (2004). Mammalian nucleoside transporters. Curr Drug Metab, 5:63–84.
  • Jennings LL, Hao C, Cabrita MA, Vickers MF, Baldwin SA, Young JD et al. (2001). Distinct regional distribution of human equilibrative nucleoside transporter proteins 1 and 2 (hENT1 and hENT2) in the central nervous system. Neuropharmacology, 40:722–731.
  • Nies AT. (2007). The role of membrane transporters in drug delivery to brain tumors. Cancer Lett, 254:11–29.
  • Spector R, Johanson CE. (2007). The origin of deoxynucleosides in brain: Implications for the study of neurogenesis and stem cell therapy. Pharm Res, 24:859–867.
  • Endres CJ, Moss AM, Ke B, Govindarajan R, Choi DS, Messing RO et al. (2009). The role of the equilibrative nucleoside transporter 1 (ENT1) in transport and metabolism of ribavirin by human and wild-type or Ent1-/- mouse erythrocytes. J Pharmacol Exp Ther, 329:387–398.
  • Bickel U. (2005). How to measure drug transport across the blood-brain barrier. Neurorx, 2:15–26.
  • Pardridge WM. Isolated brain capillaries: And in vitro model of blood-brain barrier research. In: Introduction to the blood-brain barrier: Methodology, biology and pathology (Pardridge WM, ed), pp 49–61. Cambridge, UK: Cambridge University Press, 1998.
  • Hurst RD, Fritz IB. (1996). Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood-brain barrier. J Cell Physiol, 167:81–88.
  • Kakee A, Terasaki T, Sugiyama Y. (1996). Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. J Pharmacol Exp Ther, 277:1550–1559.
  • Oldendorf WH. (1970). Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res, 24:372–376.
  • Deguchi Y, Morimoto K. (2001). Application of an in vivo brain microdialysis technique to studies of drug transport across the blood-brain barrier. Curr Drug Metab, 2:411–423.
  • Menacherry S, Hubert W, Justice JB Jr. (1992). In vivo calibration of microdialysis probes for exogenous compounds. Anal Chem, 64:577–583.
  • Janib SM, Moses AS, MacKay JA. (2010). Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev, 62:1052–1063.
  • Yang H. (2010). Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res, 27:1759–1771.
  • Kumari B, Kavimani S, Jaykar B (2010). Development of formulation and in vitro evaluation of sterically stabilized (stealth) liposome containing cytarabine. Journal of Innovative trends in Pharmaceutical Sciences, 1:283–293
  • Gabizon A, Shmeeda H, Barenholz Y. (2003). Pharmacokinetics of pegylated liposomal Doxorubicin: Review of animal and human studies. Clin Pharmacokinet, 42:419–436.
  • Hui HS, Al-Suwayeh A, Chen S, Hsien CC, You FJ. (2011). Pegylated Liposomes Incorporated with Nonionic Surfactants as an Apomorphine Delivery System Targeting the Brain: In Vitro Release and In Vivo Real-time Imaging. Curr Nanosci, 7:191–199.
  • Brasnjevic I, Steinbusch HW, Schmitz C, Martinez-Martinez P; European NanoBioPharmaceutics Research Initiative. (2009). Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol, 87:212–251.
  • Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. (2005). Colloidal carriers and blood-brain barrier (BBB) translocation: A way to deliver drugs to the brain? Int J Pharm, 298:274–292.
  • Huwyler J, Cerletti A, Fricker G, Eberle AN, Drewe J. (2002). By-passing of P-glycoprotein using immunoliposomes. J Drug Target, 10:73–79.
  • Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH et al. (2008). Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology, 149:6251–6261.
  • van Rooy I, Mastrobattista E, Storm G, Hennink WE, Schiffelers RM. (2011). Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J Control Release, 150:30–36.
  • Ying X, Wen H, Yao HJ, Zhang Y, Tian W, Zhang L et al. (2011). Pharmacokinetics and tissue distribution of dual-targeting daunorubicin liposomes in mice. Pharmacology, 87:105–114.
  • Angst MS, Drover DR. (2006). Pharmacology of drugs formulated with DepoFoam: A sustained release drug delivery system for parenteral administration using multivesicular liposome technology. Clin Pharmacokinet, 45:1153–1176.
  • Ko YT, Bhattacharya R, Bickel U. (2009). Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting. J Control Release, 133:230–237.
  • Young K, Bhattacharya R. (2009). Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting. J Control Rel, 133:230–237.
  • Migliore MM, Vyas TK, Campbell RB, Amiji MM, Waszczak BL. (2010). Brain delivery of proteins by the intranasal route of administration: A comparison of cationic liposomes versus aqueous solution formulations. J Pharm Sci, 99:1745–1761.
  • Artzner F, Zantl R, Rädler JO. (2000). Lipid-DNA and lipid-polyelectrolyte mesophases: Structure and exchange kinetics. Cell Mol Biol (Noisy-Le-Grand), 46:967–978.
  • da Cruz MT, Simões S, de Lima MC. (2004). Improving lipoplex-mediated gene transfer into C6 glioma cells and primary neurons. Exp Neurol, 187:65–75.
  • Molinari A, Colone M, Calcabrini A, Stringaro A, Toccacieli L, Arancia G et al. (2007). Cationic liposomes, loaded with m-THPC, in photodynamic therapy for malignant glioma. Toxicol in Vitro, 21:230–234.
  • Obata Y, Ciofani G, Raffa V, Cuscheiri A, Mensciassi A, Shinji T et al. (2010). Evaluation of cationic liposomes composed of an amino acid based lipid for neuronal transfection. Nanomedicine, 6:70–77.
  • Cavaletti G, Cassetti A, Canta A, Galbiati S, Gilardini A, Haas H et al. (2009). Cationic Liposomes Target Sites of Acute Neuroinflammation in Experimental Autoimmune Encephalomyelitis. Mol. Pharmaceutics, 6:1363–1370.
  • Chen H, Tang L, Qin Y, Yin Y, Tang J, Tang W et al. (2010). Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery. Eur J Pharm Sci, 40:94–102.
  • Huang A, Kennel SJ, Huang L. (1981). Immunoliposome labeling: A sensitive and specific method for cell surface labeling. J Immunol Methods, 46:141–151.
  • Huang A, Kennel SJ, Huang L. (1983). Interactions of immunoliposomes with target cells. J Biol Chem, 258:14034–14040.
  • Ho RJ, Huang L. (1985). Interactions of antigen-sensitized liposomes with immobilized antibody: A homogeneous solid-phase immunoliposome assay. J Immunol, 134:4035–4040.
  • Pardridge WM. (2002). Blood–brain barrier drug targeting enables neuroprotection in brain ischemia following delayed intravenous administration of neurotrophins. Adv Exp Med Biol/source, 513:397–430.
  • Young K, Bhattacharya R. (2009). Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting. J Control Rel/source, 133:230–237.
  • Chen H, Tang Lei, Qin Y, Yin Y, Tang J, Tang W, Sun X, Zhang Z, Liu J, He Q. (2010). Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery. Eur J Pharm Biopharm/source, 40:94–102.
  • Cornford EM, Cornford ME. (2002). New systems for delivery of drugs to the brain in neurological disease. Lancet Neurol, 1:306–315.
  • Cornford EM, Hyman S, Cornford ME, Landaw EM, Delgado-Escueta AV. (1998). Interictal seizure resections show two configurations of endothelial Glut1 glucose transporter in the human blood-brain barrier. J Cereb Blood Flow Metab, 18:26–42.
  • Huwyler J, Pardridge WM. (1998). Examination of blood-brain barrier transferrin receptor by confocal fluorescent microscopy of unfixed isolated rat brain capillaries. J Neurochem, 70:883–886.
  • Huwyler J, Yang J, Pardridge WM. (1997). Receptor mediated delivery of daunomycin using immunoliposomes: Pharmacokinetics and tissue distribution in the rat. J Pharmacol Exp Ther, 282:1541–1546.
  • Zhang X, Xie J, Li S, Wang X, Hou X. (2003). The study on brain targeting of the amphotericin B liposomes. J Drug Target, 11:117–122.
  • Zhao H, Li GL, Wang RZ, Li SF, Wei JJ, Feng M et al. (2010). A comparative study of transfection efficiency between liposomes, immunoliposomes and brain-specific immunoliposomes. J Int Med Res, 38:957–966.
  • Boado RJ. 2007. Blood-brain barrier transport of non-viral gene and RNAi therapeutics. Pharm Res, 24:1772–87.
  • Pardridge WM. (2007). Blood-brain barrier delivery. Drug Discov Today, 12:54–61.
  • Xie YL, Lu W, Jiang XG. (2006). Improvement of cationic albumin conjugated pegylated nanoparticles holding NC-1900, a vasopressin fragment analog, in memory deficits induced by scopolamine in mice. Behav Brain Res, 173:76–84.
  • Pang Z, Lu W, Gao H, Hu K, Chen J, Zhang C et al. (2008). Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Control Release, 128:120–127.
  • Du J, Lu WL, Ying X, Liu Y, Du P, Tian W et al. (2009). Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood-brain barrier and survival of brain tumor-bearing animals. Mol Pharm, 6:905–917.
  • Feng B, Tomizawa K, Michiue H, Miyatake S, Han XJ, Fujimura A et al. (2009). Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials, 30:1746–1755.
  • Gupta B, Levchenko TS, Torchilin VP. (2007). TAT peptide-modified liposomes provide enhanced gene delivery to intracranial human brain tumor xenografts in nude mice. Oncol Res, 16:351–359.
  • Soni V, Kohli DV, Jain SK. (2008). Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J Drug Target, 16:73–78.
  • Doi A, Kawabata S, Iida K, Yokoyama K, Kajimoto Y, Kuroiwa T et al. (2008). Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: A modality for boron neutron capture therapy. J Neurooncol, 87:287–294.
  • Tian W, Ying X, Du J, Guo J, Men Y, Zhang Y et al. (2010). Enhanced efficacy of functionalized epirubicin liposomes in treating brain glioma-bearing rats. Eur J Pharm Sci, 41:232–243.
  • Qin J, Chen D, Hu H, Cui Q, Qiao M, Chen B. (2007). Surface modification of RGD-liposomes for selective drug delivery to monocytes/neutrophils in brain. Chem Pharm Bull, 55:1192–1197.
  • Mina T, Hidetaka A, Takahiro F. (2010). Leptin-derived peptide, a targeting ligand for mouse brainderived endothelial cells via macropinocytosis. Biochem Biophys Res Commun, 394:587–592.
  • Sarkar S, Das N. (2006). Mannosylated liposomal flavonoid in combating age-related ischemia-reperfusion induced oxidative damage in rat brain. Mech Ageing Dev, 127:391–397.
  • Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma M. (2005). Nanoemulsions. Curr Opin Colloids Interface Sci, 10:102–110.
  • Zhang Q, Jiang X, Jiang W, Lu W, Su L, Shi Z. (2004). Preparation of nimodipine-loaded microemulsion for intranasal delivery and evaluation on the targeting efficiency to the brain. Int J Pharm, 275:85–96.
  • Vyas TK, Shahiwala A, Amiji MM. (2008). Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm, 347:93–101.
  • Rodrigues DG, Maria DA, Fernandes DC, Valduga CJ, Couto RD, Ibañez OC et al. (2005). Improvement of paclitaxel therapeutic index by derivatization and association to a cholesterol-rich microemulsion: In vitro and in vivo studies. Cancer Chemother Pharmacol, 55:565–576.
  • Edmond J. (2001). Essential polyunsaturated fatty acids and the barrier to the brain: The components of a model for transport. J Mol Neurosci, 16:181–93; discussion 215.
  • Jain A, Chasoo G, Singh SK, Saxena AK, Jain SK. (2011). Transferrin-appended PEGylated nanoparticles for temozolomide delivery to brain: In vitro characterisation. J Microencapsul, 28:21–28.
  • Kumar M, Pathak K, Misra A. (2009). Formulation and characterization of nanoemulsion-based drug delivery system of risperidone. Drug Dev Ind Pharm, 35:387–395.
  • Kumar M, Misra A, Mishra AK, Mishra P, Pathak K. (2008). Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J Drug Target, 16:806–814.
  • Vyas TK, Babbar AK, Sharma RK, Misra A. (2005). Intranasal mucoadhesive microemulsions of zolmitriptan: Preliminary studies on brain-targeting. J Drug Target, 13:317–324.
  • Vyas TK, Babbar AK, Sharma RK, Singh S, Misra A. (2006a). Preliminary brain-targeting studies on intranasal mucoadhesive microemulsions of sumatriptan. AAPS Pharmscitech, 7:E8.
  • Zhang Q, Jiang X, Jiang W, Lu W, Su L, Shi Z. (2004). Preparation of nimodipine-loaded microemulsion for intranasal delivery and evaluation on the targeting efficiency to the brain. Int J Pharm, 275:85–96.
  • Jogani VV, Shah PJ, Mishra P, Mishra AK, Misra AR. (2008). Intranasal mucoadhesive microemulsion of tacrine to improve brain targeting. Alzheimer Dis Assoc Disord, 22:116–124.
  • Shende AJ, Patil RR, Devarajan PV. (2007). Microemulsion of lamotrigine for nasal delivery. Indian J Pharm Sci, 69:721–722.
  • Vyas TK, Babbar AK, Sharma RK, Singh S, Misra A. (2006b). Intranasal mucoadhesive microemulsions of clonazepam: Preliminary studies on brain targeting. J Pharm Sci, 95:570–580.
  • Khan S, Patil K, Bobade N, Yeole P, Gaikwad R. (2010). Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J Drug Target, 18:223–234.
  • Khan S, Patil K, Yeole P, Gaikwad R. (2009). Brain targeting studies on buspirone hydrochloride after intranasal administration of mucoadhesive formulation in rats. J Pharm Pharmacol, 61:669–675.
  • Yao J, Zhou JP, Ping QN, Lu Y, Chen L. (2008). Distribution of nobiletin chitosan-based microemulsions in brain following i.v. injection in mice. Int J Pharm, 352:256–262.
  • Madhusudhan B, Rambhau D, Apte SS, Gopinath D. (2007). 1-O-alkylglycerol stabilized carbamazepine intravenous o/w nanoemulsions for drug targeting in mice. J Drug Target, 15:154–161.
  • Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K. (2008). Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm, 358:285–291.
  • Horvát S, Fehér A, Wolburg H, Sipos P, Veszelka S, Tóth A et al. (2009). Sodium hyaluronate as a mucoadhesive component in nasal formulation enhances delivery of molecules to brain tissue. Eur J Pharm Biopharm, 72:252–259.
  • Yao J, Zhou JP, Ping QN, Lu Y, Yu L. (2006). Effect of hyaluronic acid chitosan-based microemulsion on the permeability of blood brain barrier in mice. Yao Xue Xue Bao, 41:615–618.
  • Amiji M, Desai A, Vyas T. (2008). Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsions formulations. J Pharm Sci, 97:2745–2756.
  • Helen B. (2007). A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm, 65:259–69.
  • Mora-Huertas CE, Fessi H, Elaissari A. (2010). Polymer-based nanocapsules for drug delivery. Int J Pharm, 385:113–142.
  • Lamprecht A, Benoit JP. (2006). Etoposide nanocarriers suppress glioma cell growth by intracellular drug delivery and simultaneous P-glycoprotein inhibition. J Control Release, 112:208–213.
  • Bansal T, Akhtar N, Jaggi M, Khar RK, Talegaonkar S. (2009). Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discov Today, 14:1067–1074.
  • Battastini AMO. (2009). Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett, 281:53– 63.
  • Kaur IP, Bhandari R, Bhandari S, Kakkar V. (2008). Potential of solid lipid nanoparticles in brain targeting. J Control Release, 127:97–109.
  • Mishra B, Patel BB, Tiwari S. (2010). Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine, 6:9–24.
  • Muller RH, Mehnert W, Lucks JS, Schwarz C, Muhlen AZ, Weyhers H, Freitas C, Ruhl D. (1995). Solid lipid nanopaticles (SLN)—an alternative colloidal carrier system for controlled drug delivery. Eur J Pharm Biopharm, 41:62–69.
  • Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ. (1999). Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release, 59:299–307.
  • Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C. (2007). Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev, 59:454–477.
  • Agarwal A, Majumder S, Agrawal H, Majumdar S, Agrawal GP. (2011). Cationized Albumin Conjugated Solid Lipid Nanoparticles as Vectors for Brain Delivery of an Anti-Cancer Drug. Curr Nanosci, 7:71–80.
  • Kuo YC, Liang CT. (2011). Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials, 32:3340–3350.
  • Dhawan S, Kapil R, Singh B. (2011). Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol, 63:342–351.
  • Bondi ML, Montana G, Craparo EF, Picone P, Capuano G, Carlo MD, Giammona G. (2009). Ferulic Acid-Loaded Lipid Nanostructures as Drug Delivery Systems for Alzheimer’s Disease: Preparation, Characterization and Cytotoxicity Studies. Curr Nanosci, 5:26–32.
  • Manjunath K, Venkateswarlu V. (2006). Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J Drug Target, 14:632–645.
  • Wang JX, Sun X, Zhang ZR. (2002). Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. Eur J Pharm Biopharm, 54:285–290.
  • Alex A, Paul W, Chacko AJ, Sharma CP. (2011). Enhanced delivery of lopinavir to the CNS using Compritol®-based solid lipid nanoparticles. Therap Deliv, 2:25–35.
  • Bondì ML, Craparo EF, Giammona G, Drago F. (2010). Brain-targeted solid lipid nanoparticles containing riluzole: Preparation, characterization and biodistribution. Nanomedicine (Lond), 5:25–32.
  • Kasongo KW, Jansch M, Müller RH, Walker RB. (2011). Evaluation of the in vitro differential protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (NLCs) for potential targeting to the brain. J Liposome Res, 21:245–54.
  • Béduneau A, Hindré F, Clavreul A, Leroux JC, Saulnier P, Benoit JP. (2008). Brain targeting using novel lipid nanovectors. J Control Release, 126:44–49.
  • Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. (2007). Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev, 59:491–504.
  • Zara GP, Cavalli R, Bargoni A, Fundarò A, Vighetto D, Gasco MR. (2002). Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: Pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target, 10:327–335.
  • Gref R, Domb A, Quellec P, Blunk T, Mueller RH, Verbavatz JM. (1995). The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev, 16:215–233.
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release, 70:1–20.
  • Ameller T, Marsaud V, Legrand P, Gref R, Barratt G, Renoir JM. (2003). Polyester-poly(ethylene glycol) nanoparticles loaded with the pure antiestrogen RU 58668: Physicochemical and opsonization properties. Pharm Res, 20:1063–1070.
  • Kwon GS. (1998). Diblock copolymer nanoparticles for drug delivery. Crit Rev Ther Drug Carrier Syst, 15:481–512.
  • Allen TM, Cullis PR. (2004). Drug delivery systems: Entering the mainstream. Science, 303:1818–1822.
  • Huwyler J, Wu D, Pardridge WM. (1996). Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA, 93:14164–14169.
  • Lasic DD. (1998). Novel applications of liposomes. Trends Biotechnol, 16:307–321.
  • Khalil NM, Mainardes RM. (2009). Colloidal polymeric nanoparticles and brain drug delivery. Curr Drug Deliv, 6:261–273.
  • Lockman PR, Koziara J, Roder KE, Paulson J, Abbruscato TJ, Mumper RJ et al. (2003). In vivo and in vitro assessment of baseline blood-brain barrier parameters in the presence of novel nanoparticles. Pharm Res, 20:705–713.
  • Kreuter J. (2001). Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev, 47:65–81.
  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. (1995). Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res, 674:171–174.
  • Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C et al. (2002). Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target, 10:317–325.
  • Borchard G, Audus KL, Shi F, Kreuter J. (1994). Uptake of surfactant-coated poly (methyl methacrylate)-nanoparticles by bovine brain microvessel endothelial cell monolayers. Int J Pharm, 110:29–35.
  • Alyaudtin RN, Reichel A, Löbenberg R, Ramge P, Kreuter J, Begley DJ. (2001). Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro. J Drug Target, 9:209–221.
  • Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J. (1997). Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res, 14:325–328.
  • Alyautdin RN, Tezikov EB, Ramge P, Kharkevich DA, Begley DJ, Kreuter J. (1998). Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: An in situ brain perfusion study. J Microencapsul, 15:67–74.
  • Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. (1999). Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res, 16:1564–1569.
  • Steiniger SC, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS et al. (2004). Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer, 109:759–767.
  • Friese A, Seiller E, Quack G, Lorenz B, Kreuter J. (2000). Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm, 49:103–109.
  • Fonseca C, Simões S, Gaspar R. (2002). Paclitaxel-loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release, 83:273–286.
  • Bhadra D, Bhadra S, Jain S, Jain NK. (2003). A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm, 257:111–124.
  • Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V. (2004). Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci, 93:1804–1814.
  • Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. (2008). Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res, 1200:159–168.
  • Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, Balabanyan VU, Voronina TA, Trofimov SS et al. (2009). Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target, 17:564–574.
  • Gelperina SE, Khalansky AS, Skidan IN, Smirnova ZS, Bobruskin AI, Severin SE et al. (2002). Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicol Lett, 126:131–141.
  • Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A et al. (2005). Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J Control Release, 108:193–214.
  • Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. (2008). Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm, 70:75–84.
  • Saiyed ZM, Gandhi NH, Nair MP. (2009). AZT 5′-triphosphate nanoformulation suppresses human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells. J Neurovirol, 15:343–347.
  • Brigger I, Morizet J, Aubert G, Chacun H, Terrier-Lacombe MJ, Couvreur P et al. (2002b). Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J Pharmacol Exp Ther, 303:928–936.
  • Calvo P, Gouritin B, Villarroya H, Eclancher F, Giannavola C, Klein C et al. (2002). Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. Eur J Neurosci, 15:1317–1326.
  • Calvo P, Gouritin B, Brigger I, Lasmezas C, Deslys J, Williams A et al. (2001a). PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. J Neurosci Methods, 111:151–155.
  • Peracchia MT, Harnisch S, Pinto-αndary H, Gulik A, Dedieu JC, Desmaële D et al. (1999b). Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles. Biomaterials, 20:1269–1275.
  • Calvo P, Gouritin B, Chacun H, Desmaële D, D’Angelo J, Noel JP et al. (2001b). Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res, 18:1157–1166.
  • Agyare EK, Curran GL, Ramakrishnan M, Yu CC, Poduslo JF, Kandimalla KK. (2008). Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer’s disease and cerebral amyloid angiopathy. Pharm Res, 25:2674–2684.
  • Wang X, Chi N, Tang X. (2008). Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm, 70:735–740.
  • Wang S, Jiang T, Ma M, Hu Y, Zhang J. (2010). Preparation and evaluation of anti-neuroexcitation peptide (ANEP) loaded N-trimethyl chitosan chloride nanoparticles for brain-targeting. Int J Pharm, 386:249–255.
  • Khuller GK, Pandey R. (2006). Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. J Antimicrobial Chem, 57:1146–1152.
  • George J, Hasadsri L, Kreuter J, Hattori H, Iwasaki T. (2009). Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem, 284 (11):6972–81.
  • Rempe R, Cramer S, Hüwel S, Galla HJ. (2011). Transport of Poly(n-butylcyano-acrylate) nanoparticles across the blood-brain barrier in vitro and their influence on barrier integrity. Biochem Biophys Res Commun, 406:64–69.
  • Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV, Aminabhavi TM. (2010). Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2:35–47.
  • Tosi G, Costantino L, Rivasi F, Ruozi B, Leo E, Vergoni AV et al. (2007). Targeting the central nervous system: In vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Release, 122:1–9.
  • Malhotra M, Prakash S. (2011). Targeted Drug Delivery Across Blood-Brain-Barrier Using Cell Penetrating Peptides Tagged Nanoparticles. Curr Nano, 7:81–93.
  • Tahara T, Miyazaki Y, Kawashima Y, Kreuter J, Yamamoto H. (2011). Brain targeting with surface-modified poly (d,l-lactic-co-glycolic acid) nanoparticles delivered via carotid artery administration. Eur J Pharm Biopharm, 77:84–88.
  • Yang Liu Rongqin, Huang, Liang Han Weilun, Ke. (2009). Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials, 30:2009.
  • Gan CW, Feng SS. (2010). Transferrin-conjugated nanoparticles of poly(lactide)-D-α-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Biomaterials, 31:7748–7757.
  • Kwon GS. (2003). Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst, 20:357–403.
  • Kataoka K, Harada A, Nagasaki Y. (2001). Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Drug Deliv Rev, 47:113–131.
  • Kabanov AV, Alakhov VY. (2002). Pluronic block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst, 19:1–72.
  • Torchilin VP. (2004). Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci, 61:2549–2559.
  • Aliabadi HM, Lavasanifar A. (2006). Polymeric micelles for drug delivery. Expert Opin Drug Deliv, 3:139–162.
  • Torchilin VP. (2002). PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev, 54:235–252.
  • Kabanov A. (1992). A new class of drug carriers: Micelles of poly (oxyethilene)-poly (oxupropilene) block copolymers as microcontainers for drug targeting from blood in brain. J Contr Release, 22:141–158.
  • Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D et al. (2004). Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer, 90:2085–2091.
  • Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y et al. (2004). Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer, 91:1775–1781.
  • Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS et al. (2004). Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res, 10:3708–3716.
  • Matsumura Y. (2006). Micelle carrier system in clinical trial. Nippon Rinsho, 64:316–321.
  • Armstrong A. (2006). SP1049C as first-line therapy in advanced (inoperable or metastatic) adenocarcinoma of the oesophagus: A phase II window study. J Clin Oncol, ASCO annual meeting proceedings, 24:4080.
  • Batrakova EV, Li S, Elmquist WF, Miller DW, Alakhov VY, Kabanov AV. (2001). Mechanism of sensitization of MDR cancer cells by Pluronic block copolymers: Selective energy depletion. Br J Cancer, 85:1987–1997.
  • Batrakova EV, Li S, Vinogradov SV, Alakhov VY, Miller DW, Kabanov AV. (2001). Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: Contributions of energy depletion and membrane fluidization. J Pharmacol Exp Ther, 299:483–493.
  • Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP. (2001). Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides, 22:2329–2343.
  • Alakhov V, Moskaleva E, Batrakova EV, Kabanov AV. (1996). Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconjug Chem, 7:209–16.
  • Dutta T, Jain NK, McMillan NA, Parekh HS. (2010). Dendrimer nanocarriers as versatile vectors in gene delivery. Nanomedicine, 6:25–34.
  • Pasha S, Gupta K. (2010). Various drug delivery approaches to the central nervous system. Expert Opin Drug Deliv, 7:113–135.
  • Jaturanpinyo M, Harada A, Yuan X, Kataoka K. (2004). Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde. Bioconjug Chem, 15:344–348.
  • Bronich TK, Ouyang M, Kabanov VA, Eisenberg A, Szoka FC Jr , Kabanov AV. (2002). Synthesis of vesicles on polymer template. J Am Chem Soc, 124:11872–11873.
  • Yokosawa M, Sonoda Y, Sugiyama S, Saito R, Yamashita Y, Nishihara M et al. (2010). Convection-enhanced delivery of a synthetic retinoid Am80, loaded into polymeric micelles, prolongs the survival of rats bearing intracranial glioblastoma xenografts. Tohoku J Exp Med, 221:257–264.
  • Inoue T, Yamashita Y, Nishihara M, Sugiyama S, Sonoda Y, Kumabe T et al. (2009). Therapeutic efficacy of a polymeric micellar doxorubicin infused by convection-enhanced delivery against intracranial 9L brain tumor models. Neuro-Oncology, 11:151–157.
  • Jain R, Nabar S, Dandekar P, Hassan P, Aswal V, Talmon Y et al. (2010). Formulation and evaluation of novel micellar nanocarrier for nasal delivery of sumatriptan. Nanomedicine (Lond), 5:575–587.
  • Jain R, Nabar S, Dandekar P, Patravale V. (2010). Micellar nanocarriers: Potential nose-to-brain delivery of zolmitriptan as novel migraine therapy. Pharm Res, 27:655–664.
  • Yáñez JA, Forrest ML, Ohgami Y, Kwon GS, Davies NM. (2008). Pharmacometrics and delivery of novel nanoformulated PEG-b-poly(epsilon-caprolactone) micelles of rapamycin. Cancer Chemother Pharmacol, 61:133–144.
  • Patrice H, Dhanikula RS, Hammady T. (2009). On the mechanism and dynamics of uptake and permeation of polyether-copolyester dendrimers across an invitro blood–brain barrier model. J Pharm Sci, 98:3748–60.
  • Capala J, Barth RF, Bendayan M, Lauzon M, Adams DM, Soloway AH et al. (1996). Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors. Bioconjug Chem, 7:7–15.
  • Yang W, Barth RF, Adams DM, Soloway AH. (1997). Intratumoral delivery of boronated epidermal growth factor for neutron capture therapy of brain tumors. Cancer Res, 57:4333–4339.
  • Yang W, Barth RF, Wu G, Bandyopadhyaya AK, Thirumamagal BT, Tjarks W et al. (2004). Boronated epidermal growth factor as a delivery agent for neutron capture therapy of EGF receptor positive gliomas. Appl Radiat Isot, 61:981–985.
  • Gedda L, Olsson P, Pontén J, Carlsson J. (1996). Development and in vitro studies of epidermal growth factor-dextran conjugates for boron neutron capture therapy. Bioconjug Chem, 7:584–591.
  • Barth RF, Adams DM, Soloway AH, Alam F, Darby MV. (1994). Boronated starburst dendrimer-monoclonal antibody immunoconjugates: Evaluation as a potential delivery system for neutron capture therapy. Bioconjug Chem, 5:58–66.
  • Wu G, Barth RF, Yang W, Chatterjee M, Tjarks W, Ciesielski MJ et al. (2004). Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug Chem, 15:185–194.
  • Liu L, Barth RF, Adams DM, Soloway AH, Reisfeld RA. (1995). Bispecific antibodies as targeting agents for boron neutron capture therapy of brain tumors. J Hematother, 4:477–483.
  • Liu L, Barth RF, Adams DM, Soloway AH, Reisfeld RA. (1996). Critical evaluation of bispecific antibodies as targeting agents for boron neutron capture therapy of brain tumors. Anticancer Res, 16:2581–2587.
  • Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal BT, Tjarks W et al. (2005). Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther, 4:1423–1429.
  • Dhanikula Argaw, A, Bouchard JF, Hildgen P. (2008). Methotrexate loaded polyethercopolyester dendrimers for the treatment of gliomas: Enhanced efficacy and intratumoral transport capability. Mol Pharmaceutics, 5 (1):105–16.
  • Huang RQ, Qu YH, Ke WL, Zhu JH, Pei YY, Jiang C. (2007). Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Faseb J, 21:1117–1125.
  • Jose LJ, Clemente MI, Weber ND, Sanchez JO, Javier DLM, Gómez RG et al. (2010). Carbosilane Dendrimers to Transfect Human Astrocytes with Small Interfering RNA Targeting Human Immunodeficiency Virus. Biodrugs, 24:331–343.
  • Solassol J, Crozet C, Perrier V, Leclaire J, Béranger F, Caminade AM et al. (2004). Cationic phosphorus-containing dendrimers reduce prion replication both in cell culture and in mice infected with scrapie. J Gen Virol, 85:1791–1799.
  • Wu G, Yang W, Barth RF, Kawabata S, Swindall M, Bandyopadhyaya AK et al. (2007). Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab. Clin Cancer Res, 13:1260–1268.
  • Vinogradov SV, Batrakova EV, Kabanov AV. (2004). Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem, 15:50–60.
  • Vinogradov SV, Kohli E, Zeman AD. (2005a). Cross-linked polymeric nanogel formulations of 5′-triphosphates of nucleoside analogues: Role of the cellular membrane in drug release. Mol Pharm, 2:449–461.
  • Vinogradov SV, Zeman AD, Batrakova EV, Kabanov AV. (2005b). Polyplex Nanogel formulations for drug delivery of cytotoxic nucleoside analogs. J Control Release, 107:143–157.
  • Bronich TK, Bontha S, Shlyakhtenko LS, Bromberg L, Hatton TA, Kabanov AV. (2006). Template-assisted synthesis of nanogels from Pluronic-modified poly(acrylic acid). J Drug Target, 14:357–366.
  • McAllister K, Sazani P, Adam M, Cho MJ, Rubinstein M, Samulski RJ et al. (2002). Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. J Am Chem Soc, 124:15198–15207.
  • Lemieux P, Vinogradov SV, Gebhart CL, Guérin N, Paradis G, Nguyen HK et al. (2000). Block and graft copolymers and NanoGel copolymer networks for DNA delivery into cell. J Drug Target, 8:91–105.
  • Bontha S, Kabanov AV, Bronich TK. (2006). Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J Control Release, 114:163–174.
  • Vinogradov SV, Bronich TK, Kabanov AV. (2002). Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells. Adv Drug Deliv Rev, 54:135–147.
  • Kabanov AV, Batrakova EV. (2004). New technologies for drug delivery across the blood brain barrier. Curr Pharm Des, 10:1355–1363.
  • Vinogradov SV, Poluektova LY, Makarov E, Gerson T, Senanayake MT. (2010). Nano-NRTIs: Efficient inhibitors of HIV type-1 in macrophages with a reduced mitochondrial toxicity. Antivir Chem Chemother, 21:1–14.
  • Hau P, Fabel K, Baumgart U, Rümmele P, Grauer O, Bock A et al. (2004). Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer, 100:1199–1207.
  • Groll AH, Giri N, Petraitis V, Petraitiene R, Candelario M, Bacher JS et al. (2000). Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis, 182:274–282.
  • Yoshida J, Mizuno M, Fujii M, Kajita Y, Nakahara N, Hatano M et al. (2004). Human gene therapy for malignant gliomas (glioblastoma multiforme and anaplastic astrocytoma) by in vivo transduction with human interferon β gene using cationic liposomes. Hum Gene Ther, 15:77–86.
  • Bhanushali RS, Gatne MM, Gaikwad RV, Bajaj AN, Morde MA. (2009). Nanoemulsion based Intranasal Delivery of Antimigraine Drugs for Nose to Brain Targeting. Indian J Pharm Sci, 71:707–709.
  • Al-Ghananeem AM, Saeed H, Florence R, Yokel RA, Malkawi AH. (2010). Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J Drug Target, 18:381–388.
  • Wilson B, Samanta MK, Santhi K, Kumar KP, Ramasamy M, Suresh B. (2010). Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine, 6:144–152.
  • Soliman GM, Sharma R, Choi AO, Varshney SK, Winnik FM, Kakkar AK et al. (2010). Tailoring the efficacy of nimodipine drug delivery using nanocarriers based on A2B miktoarm star polymers. Biomaterials, 31:8382–8392.
  • Jain N, Akhtar S, Jain GK, Khan ZI, Khar RK, Ahmad FJ. (2011). Antiepileptic Intranasal Amiloride Loaded Mucoadhesive Nanoemulsion: Development and Safety Assessment. Journ Biomed Nanotech, 7:142–143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.