2,601
Views
215
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in ocular drug delivery

, , &
Pages 1599-1617 | Received 23 Feb 2012, Accepted 01 Oct 2012, Published online: 16 Nov 2012

References

  • Stjernschantz J, Astin M. (1993). Anatomy and physiology of the eye, physiological aspects of ocular drug therapy. In: Edman P, editor. Biopharmaceutics in Ocular Drug Delivery. Boca Raton: CRC Press, 1–25.
  • Robinson JC. (2003). Ocular anatomy and physiology relevant to ocular drug delivery. In: Mitra AK, editor. Ophthalmic Drug Delivery Systems. New York: Etats-Unis, 29–57.
  • Shell JW. (1982). Pharmacokinetics of topically applied ophthalmic drugs. Surv Ophthalmol, 26:207–218.
  • Rabinovich-Guilatt L, Couvreur P, Lambert G, Dubernet C. (2004). Cationic vectors in ocular drug delivery. J Drug Target, 12:623–633.
  • Janoria KG, Hariharan S, Dasari CR, Mitra AK. (2007). Recent patents and advances in ophthalmic drug delivery. Recent Pat Drug Deliv Formul, 1:161–170.
  • Sirbat D, Marchal-Heussler L, Hoffman M, Maincent P. (2000). [Ways to improve ocular bioavailability for topical applications]. J Fr Ophtalmol, 23:505–9; quiz 523.
  • Kompella UB, Kadam RS, Lee VH. (2010). Recent advances in ophthalmic drug delivery. Ther Deliv, 1:435–456.
  • Lallemand F, Perottet P, Felt-Baeyens O, Kloeti W, Philippoz F, Marfurt J et al. (2005). A water-soluble prodrug of cyclosporine A for ocular application: A stability study. Eur J Pharm Sci, 26:124–129.
  • Tirucherai GS, Dias C, Mitra AK. (2002). Corneal permeation of ganciclovir: Mechanism of ganciclovir permeation enhancement by acyl ester prodrug design. J Ocul Pharmacol Ther, 18:535–548.
  • Kaur IP, Kanwar M. (2002). Ocular preparations: The formulation approach. Drug Dev Ind Pharm, 28:473–493.
  • Kaur IP, Chhabra S, Aggarwal D. (2004). Role of cyclodextrins in ophthalmics. Curr Drug Deliv, 1:351–360.
  • Loftsson T, Stefánsson E. (2002). Cyclodextrins in eye drop formulations: Enhanced topical delivery of corticosteroids to the eye. Acta Ophthalmol Scand, 80:144–150.
  • Saari KM, Nelimarkka L, Ahola V, Loftsson T, Stefánsson E. (2006). Comparison of topical 0.7% dexamethasone-cyclodextrin with 0.1% dexamethasone sodium phosphate for postcataract inflammation. Graefes Arch Clin Exp Ophthalmol, 244:620–626.
  • Sigurdsson HH, Konráethsdóttir F, Loftsson T, Stefánsson E. (2007). Topical and systemic absorption in delivery of dexamethasone to the anterior and posterior segments of the eye. Acta Ophthalmol Scand, 85:598–602.
  • Singh SK, Bandyopadhyay P, Hassan S, inventors. (2004). Ophthalmic antibiotic drug formulations containing a cyclodextrin compound and cetyl pyridinium chloride. US patent 0019012.
  • Loftsson T, Stefansson E, inventors. (2007). Cyclodextrin nanotechnology for ophthalmic drug delivery. US patent 0020336.
  • Ito Y, Nagai N, Shimomura Y. (2010). Reduction in intraocular pressure by the instillation of eye drops containing disulfiram included with 2-hydroxypropyl-ß-cyclodextrin in rabbit. Biol Pharm Bull, 33:1574–1578.
  • Sasaki H, Igarashi Y, Nagano T, Nishida K, Nakamura J. (1995). Different effects of absorption promoters on corneal and conjunctival penetration of ophthalmic β-blockers. Pharm Res, 12:1146–1150.
  • Nanjawade BK, Manvi FV, Manjappa AS. (2007). In situ-forming hydrogels for sustained ophthalmic drug delivery. J Control Release, 122:119–134.
  • Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. (1998). Ophthalmic drug delivery systems–recent advances. Prog Retin Eye Res, 17:33–58.
  • Ludwig A. (2005). The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev, 57:1595–1639.
  • Laroche L, Arrata M, Brasseur G, Lagoutte F, Le Mer Y, Lumbroso P et al. (1991). [Treatment of dry eye syndrome with lacrimal gel: A randomized multicenter study]. J Fr Ophtalmol, 14:321–326.
  • Johnson ME, Murphy PJ, Boulton M. (2006). Effectiveness of sodium hyaluronate eyedrops in the treatment of dry eye. Graefes Arch Clin Exp Ophthalmol, 244:109–112.
  • Khamar BM, inventor. (2001). Ophthalmic formulation comprising a β blocker and carbopol. EP patent 1137407.
  • Lu GW. (2010). Recent advances in developing ophthalmic formulations: A patent review. Recent Pat Drug Deliv Formul, 4:49–57.
  • Gurtler F, Gurny R. (1995). Patent literature review of ophthalmic inserts. Drug Dev Ind Pharm, 21:1–18.
  • Escobar-Chávez JJ, López-Cervantes M, Naïk A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A. (2006). Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci, 9:339–358.
  • El-Kamel AH. (2002). In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm, 241:47–55.
  • Shastri D, Patel L, Parikh R. (2010). Studies on In situ Hydrogel: A Smart Way for Safe and Sustained Ocular Drug Delivery. J Young Pharm, 2:116–120.
  • Miyazaki S, Suzuki S, Kawasaki N, Endo K, Takahashi A, Attwood D. (2001). In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int J Pharm, 229:29–36.
  • Johnson ME, Murphy PJ, Boulton M. (2008). Carbomer and sodium hyaluronate eyedrops for moderate dry eye treatment. Optom Vis Sci, 85:750–757.
  • Vyas SP, Ramchandraiah S, Jain CP, Jain SK. (1992). Polymeric pseudolatices bearing pilocarpine for controlled ocular delivery. J Microencapsul, 9:347–355.
  • Maurice DM, Srinivas SP. (1992). Use of fluorometry in assessing the efficacy of a cation-sensitive gel as an ophthalmic vehicle: Comparison with scintigraphy. J Pharm Sci, 81:615–619.
  • Carlfors J, Edsman K, Petersson R, Jörnving K. (1998). Rheological evaluation of Gelrite in situ gels for ophthalmic use. Eur J Pharm Sci, 6:113–119.
  • Balasubramaniam J, Pandit JK. (2003). Ion-activated in situ gelling systems for sustained ophthalmic delivery of ciprofloxacin hydrochloride. Drug Deliv, 10:185–191.
  • El-Kamel A, Al-Dosari H, Al-Jenoobi F. (2006). Environmentally responsive ophthalmic gel formulation of carteolol hydrochloride. Drug Deliv, 13:55–59.
  • Sultana Y, Aqil M, Ali A, Zafar S. (2006). Evaluation of carbopol-methyl cellulose based sustained-release ocular delivery system for pefloxacin mesylate using rabbit eye model. Pharm Dev Technol, 11:313–319.
  • Mohan EC. (2009). Preparation and evaluation of in-situ-gels for ocular drug delivery. J Pharm Res, 2:1089–1094.
  • Séchoy O, Tissié G, Sébastian C, Maurin F, Driot JY, Trinquand C. (2000). A new long acting ophthalmic formulation of carteolol containing alginic acid. Int J Pharm, 207:109–116.
  • Demailly P, Allaire C, Trinquand C; Once-daily Carteolol Study Group. (2001). Ocular hypotensive efficacy and safety of once daily carteolol alginate. Br J Ophthalmol, 85:921–924.
  • Trinquand C, Romanet JP, Nordmann JP, Allaire C; Groupe d’étude. (2003). [Efficacy and safety of long-acting carteolol 1% once daily. A double-masked, randomized study]. J Fr Ophtalmol, 26:131–136.
  • Lang JC, Keister JC, Missel PJT, Stancioff DJ, inventors. (1995). Use of carrageenans in topical ophthalmic compositions. US patent 5403841.
  • Srividya B, Cardoza RM, Amin PD. (2001). Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release, 73:205–211.
  • Lin HR, Sung KC, inventors. (2003). Ophthalmic drug delivery formulations and method for preparing the same. US patent 6511660.
  • Liu Z, Pan W, Nie S, Zhang L, Yang X, Li J. (2005). Preparation and evaluation of sustained ophthalmic gel of enoxacin. Drug Dev Ind Pharm, 31:969–975.
  • Liu Z, Li J, Nie S, Liu H, Ding P, Pan W. (2006). Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm, 315:12–17.
  • Gupta H, Jain S, Mathur R, Mishra P, Mishra AK, Velpandian T. (2007). Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system. Drug Deliv, 14:507–515.
  • Singh V, Bushetti SS, Appala R, Shareef A, Imam SS, Singh M. (2010). Stimuli-sensitive hydrogels: A novel ophthalmic drug delivery system. Indian J Ophthalmol, 58:477–481.
  • Schoenwald RD. (1993). Pharmacokinetics in ocular drug delivery. In: Edman P, editor. Biopharmaceutics of Ocular Drug Delivery. Mitra AK, 159–193.
  • Pietzyk B, Henschke K. (2000). Degradation of phosphatidylcholine in liposomes containing carboplatin in dependence on composition and storage conditions. Int J Pharm, 196:215–218.
  • Hathout RM, Mansour S, Mortada ND, Guinedi AS. (2007). Liposomes as an ocular delivery system for acetazolamide: In vitro and in vivo studies. AAPS PharmSciTech, 8:1.
  • Shen Y, Tu J. (2007). Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS J, 9:E371–E377.
  • Mehanna MM, Elmaradny HA, Samaha MW. (2009). Mucoadhesive liposomes as ocular delivery system: Physical, microbiological, and in vivo assessment. Drug Dev Ind Pharm, 36:108–118.
  • Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D. (2010). Liposomes as an ocular delivery system of fluconazole: In-vitro studies. Acta Ophthalmol, 88:901–904.
  • Budai L, Hajdú M, Budai M, Gróf P, Béni S, Noszál B et al. (2007). Gels and liposomes in optimized ocular drug delivery: Studies on ciprofloxacin formulations. Int J Pharm, 343:34–40.
  • Hosny KM. (2009). Preparation and evaluation of thermosensitive liposomal hydrogel for enhanced transcorneal permeation of ofloxacin. AAPS PharmSciTech, 10:1336–1342.
  • Hosny KM. (2010). Ciprofloxacin as ocular liposomal hydrogel. AAPS PharmSciTech, 11:241–246.
  • Zhang J, Guan P, Wang T, Chang D, Jiang T, Wang S. (2009). Freeze-dried liposomes as potential carriers for ocular administration of cytochrome c against selenite cataract formation. J Pharm Pharmacol, 61:1171–1178.
  • Zhang J, Wang S. (2009). Topical use of coenzyme Q10-loaded liposomes coated with trimethyl chitosan: Tolerance, precorneal retention and anti-cataract effect. Int J Pharm, 372:66–75.
  • Aggarwal D, Kaur IP. (2005). Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm, 290:155–159.
  • Kaur IP, Aggarwal D, Singh H, Kakkar S. (2010). Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol, 248:1467–1472.
  • Guinedi AS, Mortada ND, Mansour S, Hathout RM. (2005). Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm, 306:71–82.
  • Aggarwal D, Pal D, Mitra AK, Kaur IP. (2007). Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by microdialysis sampling of aqueous humor. Int J Pharm, 338:21–26.
  • Abdelbary G, El-Gendy N. (2008). Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech, 9:740–747.
  • Garg G, Saraf S, Saraf S. (2007). Cubosomes: An overview. Biol Pharm Bull, 30:350–353.
  • Gan L, Han S, Shen J, Zhu J, Zhu C, Zhang X et al. (2010). Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: Improving preocular retention and ocular bioavailability. Int J Pharm, 396:179–187.
  • Han S, Shen JQ, Gan Y, Geng HM, Zhang XX, Zhu CL et al. (2010). Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol Sin, 31:990–998.
  • Klang SH, Siganos CS, Benita S, Frucht-Pery J. (1999). Evaluation of a positively charged submicron emulsion of piroxicam on the rabbit corneum healing process following alkali burn. J Control Release, 57:19–27.
  • Abdulrazik M, Tamilvanan S, Khoury K, Benita S. (2001). Ocular delivery of cyclosporin A. II. Effect of submicron emulsion’s surface charge on ocular distribution of topical cyclosporin A. Paris: Editions de santé.
  • Benita S, Lambert G, inventors. (2003). Method and composition for dry eye treatment. US patent 0108626.
  • Bague S, Betty P, Sebastien GJ, >inventors. (2006). Oil in water type emulsion with low concentration of cationic agent and positive zeta potentiel. US patent 0100288.
  • Klang S, Abdulrazik M, Benita S. (2000). Influence of emulsion droplet surface charge on indomethacin ocular tissue distribution. Pharm Dev Technol, 5:521–532.
  • Gan L, Gan Y, Zhu C, Zhang X, Zhu J. (2009). Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: In vitro and in vivo results. Int J Pharm, 365:143–149.
  • Fialho SL, da Silva-Cunha A. (2004). New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Experiment Ophthalmol, 32:626–632.
  • Ammar HO, Salama HA, Ghorab M, Mahmoud AA. (2009). Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech, 10:808–819.
  • Marchal-Heussler L, Sirbat D, Hoffman M, Maincent P. (1991). [Nanocapsules of β-blocking agents: A new drug carrier in ophthalmology. Application to medical treatment of glaucoma in rabbits]. J Fr Ophtalmol, 14:371–375.
  • Marchal-Heussler L, Sirbat D, Hoffman M, Maincent P. (1993). Poly(epsilon-caprolactone) nanocapsules in carteolol ophthalmic delivery. Pharm Res, 10:386–390.
  • De Campos AM, Sánchez A, Alonso MJ. (2001). Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm, 224:159–168.
  • Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G. (2002). Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials, 23:3247–3255.
  • Giannavola C, Bucolo C, Maltese A, Paolino D, Vandelli MA, Puglisi G et al. (2003). Influence of preparation conditions on acyclovir-loaded poly-d,l-lactic acid nanospheres and effect of PEG coating on ocular drug bioavailability. Pharm Res, 20:584–590.
  • de Campos AM, Diebold Y, Carvalho EL, Sánchez A, Alonso MJ. (2004). Chitosan nanoparticles as new ocular drug delivery systems: In vitro stability, in vivo fate, and cellular toxicity. Pharm Res, 21:803–810.
  • Enriquez de Salamanca A, Diebold Y, Calonge M, Garcia-Vazquez C, Callejo S, Vila A et al. (2006). Chitosan nanoparticles as a potential drug delivery system for the ocular surface: Toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci, 47:1416–1425.
  • Vega E, Egea MA, Valls O, Espina M, García ML. (2006). Flurbiprofen loaded biodegradable nanoparticles for ophtalmic administration. J Pharm Sci, 95:2393–2405.
  • Kao HJ, Lin HR, Lo YL, Yu SP. (2006). Characterization of pilocarpine-loaded chitosan/Carbopol nanoparticles. J Pharm Pharmacol, 58:179–186.
  • Kassem MA, Abdel Rahman AA, Ghorab MM, Ahmed MB, Khalil RM. (2007). Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm, 340:126–133.
  • Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. (2008). Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm, 68:513–525.
  • Yenice I, Mocan MC, Palaska E, Bochot A, Bilensoy E, Vural I et al. (2008). Hyaluronic acid coated poly-epsilon-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea. Exp Eye Res, 87:162–167.
  • Sakai T, Ishihara T, Higaki M, Akiyama G, Tsuneoka H. (2011). Therapeutic effect of stealth-type polymeric nanoparticles with encapsulated betamethasone phosphate on experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci, 52:1516–1521.
  • Ibrahim HK, El-Leithy IS, Makky AA. (2010). Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol Pharm, 7:576–585.
  • Uner M, Yener G. (2007). Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine, 2:289–300.
  • Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. (2002). Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm, 238:241–245.
  • Pierscionek BK, Li Y, Yasseen AA, Colhoun LM, Schachar RA, Chen W. (2010). Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology, 21:035102.
  • Chen J, Patil S, Seal S, McGinnis JF. (2008). Nanoceria particles prevent ROI-induced blindness. Adv Exp Med Biol, 613:53–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.