487
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Design of polymeric nanoparticles and its applications as drug delivery systems for acne treatment

, , , &
Pages 409-417 | Received 24 Jul 2012, Accepted 11 Jan 2013, Published online: 13 Mar 2013

References

  • Rolland A, Wagner N, Chatelus A, et al. Site-specific drug delivery to pilosebaceous structures using polymeric microspheres. Pharm Res 1993;10:1738–44
  • Toll R, Jacobi U, Richter H, et al. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol 2004;123:168–76
  • Vogt A, Combadiere B, Hadam S, et al. 40 nm, but not 750 or 1500 nm, nanoparticles enter epidermal CD1a + cells after transcutaneous application on human skin. J Invest Dermatol 2006;126:1316–22
  • Alvarez-Roman R, Naik A, Kalia YN, et al. Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res 2004;21:1818–25
  • Patzelt A, Richter H, Knorr F, et al. Selective follicular targeting by modification of the particle sizes. J Control Release 2011;150:45–8
  • Litvinov D, Selvarajan K, Garelnabi M, et al. Anti-atherosclerotic actions of azelaic acid, an end product of linoleic acid peroxidation, in mice. Atherosclerosis 2010;209:449–54
  • Addo-Boadu K, Wojta J, Christ G, et al. Azelaic acid decreases the fibrinolytic potential of cultured human melanoma cells in vitro. Cancer Lett 1996;103:125–9
  • Thiboutot D. New treatments and therapeutic strategies for acne. Arch Fam Med 2000;9:179–87
  • Manosroi J, Apriyani MG, Foe K, Manosroi A. Enhancement of the release of azelaic acid through the synthetic membranes by inclusion complex formation with hydroxypropyl-beta-cyclodextrin. Int J Pharm 2005;293:235–40
  • Krautheim A, Gollnick H. Transdermal penetration of topical drugs used in the treatment of acne. Clin Pharmacokinet 2003;42:1287–304
  • Bojar RA, Cutcliffe AG, Graupe K, et al. Follicular concentrations of azelaic acid after a single topical application. Br J Dermatol 1993;129:399–402
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000;21:2475–90
  • Semete B, Booysen L, Lemmer Y, et al. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine: NBM 2010;6:662–71
  • Jang JY, Kwon BS, Lee HE, et al. Preparation of biodegradable PLGA nanospheres employing a fast solvent evaporation method. J Ind Eng Chem 2007;13:1043–6
  • Cheng FY, Wang SP, Su CH, et al. Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials 2008;29:2104–12
  • Contreras JEL. Human skin drug delivery using biodegradable PLGA – nanoparticles. Saarbrücken: University of Saarlandes; 2007
  • Rancan F, Papakostas D, Hadam S, et al. Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res 2009;26:2027–36
  • Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm 1999;187:143–52
  • Roberto A, Caetano PP. A high-throughput screening method for general cytotoxicity part I chemical toxicity. Rev Lusófona de Ciências e Tecnologias da Saúde 2005;2:95–100
  • Quintanar-Guerrero D, Allemann E, Doelker E, Fessi H. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm Res 1998;15:1056–62
  • Esmaeili F, Atyabi F, Dinarvand R. Preparation and characterization of estradiol-loaded PLGA nanoparticles using homogenization-solvent diffusion method. DARU J Pharm Sci 2008;16:196–202
  • Esmaeili F, Atyabi F, Dinarvand R. Preparation of PLGA nanoparticles using TPGS in the spontaneous emulsification solvent diffusion method. J Exp Nanosci 2007;2:183–92
  • Parajo Y, d'Angelo I, Horvath A, et al. PLGA: poloxamer blend micro- and nanoparticles as controlled release systems for synthetic proangiogenic factors. Eur J Pharm Sci 2010;41:644–9
  • Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res 2004;27:1–12
  • Choi SH, Park TG. G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method. Int J Pharm 2006;311:223–8
  • Musumeci T, Vicari L, Ventura CA, et al. Lyoprotected nanosphere formulations for paclitaxel controlled delivery. J Nanosci Nanotechnol 2006;6:3118–25
  • Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 2009;26:1025–58
  • Geng H, Song H, Qi J, Cui D. Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix. Nanoscale Res Lett 2011;6:312--19
  • Korting HC, Schafer-Korting M. Carriers in the topical treatment of skin disease. In: Ganten D, Page CP, Rosenthal W, et al, eds. Handbook of experimental pharmacology. Berlin: Springer; 2010:435–68
  • Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 2002;82:105–14
  • Yang R, Shim W-S, Cui F-D, et al. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Int J Pharm 2009;371:142–7
  • Santander-Ortega MJ, Jodar-Reyes AB, Csaba N, et al. Colloidal stability of pluronic F68-coated PLGA nanoparticles: a variety of stabilisation mechanisms. J Colloid Interface Sci 2006;302:522–9
  • Liu G, Miao X, Fan W, et al. Porous PLGA microspheres effectively loaded with BSA protein by electrospraying combined with phase separation in liquid nitrogen. J Biomim Biomater Tissue Eng 2010;6:1–18
  • Hammady T, El-Gindy A, Lejmi E, et al. Characteristics and properties of nanospheres co-loaded with lipophilic and hydrophilic drug models. Int J Pharm 2009;369:185–95
  • Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci 2001;13:123–33
  • Muthu M. Nanoparticles based on PLGA and its co-polymer: an overview. Asian J Pharm 2009;3:266–73
  • Sahana DK, Mittal G, Bhardwaj V, Kumar MNVR. PLGA nanoparticles for oral delivery of hydrophobic drugs: influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug. J Pharm Sci 2008;97:1530–42
  • Fernández-Carballido A, Herrero-Vanrell R, Molina-Martínez IT, Pastoriza P. Biodegradable ibuprofen-loaded PLGA microspheres for intraarticular administration effect of labrafil addition on release in vitro. Int J Pharm 2004;279:33–41
  • Chan JM, Zhang L, Yuet KP, et al. PLGA--lecithin--PEG core--shell nanoparticles for controlled drug delivery. Biomaterials 2009;30:1627–34
  • Li N, Wu X, Jia W, et al. Effect of ionization and vehicle on skin absorption and penetration of azelaic acid. Drug Dev Ind Pharm 2012;38:985–94
  • Takahashi K, Sakano H, Rytting JH, et al. Influence of pH on the permeability of p-toluidine and aminopyrine through shed snake skin as a model membrane. Drug Dev Ind Pharm 2001;27:159–64
  • Kitamura T, Todo H, Sugibayashi K. Effect of several electrolyzed waters on the skin permeation of lidocaine, benzoic acid, and isosorbide mononitrate. Drug Dev Ind Pharm 2009;35:145–53
  • Castro GA, Orefice RL, Vilela JM, et al. Development of a new solid lipid nanoparticle formulation containing retinoic acid for topical treatment of acne. J Microencapsul 2007;24:395–407
  • Wang F, Chen Y, Benson HAE. Formulation of nano and micro PLGA particles of the model peptide insulin: preparation, characterization, stability and deposition in human skin. Open Drug Deliv J 2008;2:1–9
  • García-Saucedo C, Field JA, Otero-Gonzalez L, Sierra-Álvarez R. Low toxicity of HfO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae. J Hazard Mater 2011;192:1572–9
  • Nafee N, Schneider M, Schaefer UF, Lehr CM. Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int J Pharm 2009;381:130–9
  • Yan F, Zhang C, Zheng Y, et al. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine: NBM 2010;6:170–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.