252
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLECellular and Molecular Biology

Gene Expression Profile Associated with Oncogenic Ras-induced Senescence, Cell Death, and Transforming Properties in Human Cells

, , , , , , & show all
Pages 563-587 | Published online: 02 Nov 2009

REFERENCES

  • Barbacid, M. Ras genes. Annu Rev Biochem 1987, 56, 779–827.
  • Bos, J.L. Ras oncogenes in human cancer: a review. Cancer Res 1989, 49, 4682–4689.
  • Stokoe, D.; Macdonald, S.G.; Cadwallader, K.; Symons, M.; Hancock, J.F. Activation of Raf as a result of recruitment to the plasma membrane. Science 1994, 264, 1463–1467.
  • Zinck, R.; Hipskind, R.; Pingoud, A.V.; Nordheim, A. c-fos transcriptional activation and repression correlate temporally with the phosphorylation status of TCF. EMBO J 1993, 12, 2377–2387.
  • Cheng, K.; Meinkoth, J.L. Enhanced sensitivity to apoptosis in Ras-transformed thyroid cells. Oncogene 2001, 20, 7334–7341.
  • Schwieger, A.; Bauer, L.; Hanusch, J.; Sers, C.; Sehafer, R.; Bauer, G. Ras oncogene expression determines sensitivity for intercellular induction of apoptosis. Carcinogenesis 2001, 22, 1385–1392.
  • Vos, M.D.; Ellis, C.A.; Bell, A.; Birrer, M.J.; Clark, G.J. Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem 2000, 275, 35669–35672.
  • Vos, M.D.; Ellis, C.A.; Elam, C.; Ulku, A.S.; Taylor, B.J.; Clark, G.J. RASSF2 is a novel K-Ras-specific effector and potential tumor suppressor. J Biol Chem 2003, 278, 21938–21943.
  • Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602.
  • Mason, D.X.; Jackson, T.J.; Lin, A. Molecular signature of oncogenic Ras-induced senescence. Oncogene 2004, 23, 9238–9246.
  • Wang, W.; Chen, J.X.; Liao, R.; Deng, Q.; Zhou, J.J.; Huang, S.; Sun, P. Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic Ras-induced premature senescence. Mol Cell Biol 2002, 22, 3389–3403.
  • Schulze, A.; Lehmann, K.; Jefferies, H.B.J.; Mc Mahon, M.; Downward, J. Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev 2001, 15, 981–994.
  • Jacobsen, K.; Groth, A.; Willumse, B.M. Ras-inducible immortalized fibroblasts: focus formation without cell cycle deregulation. Oncogene 2002, 21, 3058–3067.
  • Senner, V.; Sotoodeh, A.; Paulus, W. Regulated gene expression in glioma cells: a comparison of three inducible systems. Neurochem Res 2001, 26, 521–524.
  • Meyer-Ficca, M.L.; Meyer, R.G.; Kaiser, H.; Brack, A.R.; Kandolf, R.; Kupper, J.H. Comparative analysis of inducible expression systems in transient transfection studies. Anal Biochem 2004, 334, 9–19.
  • Graham, F.L.; Smiley, J.; Russell, W.C.; Naim, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977, 36, 59–74.
  • Louis, N.; Evelegh, C.; Graham, F.L. Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. Virology 1997, 233, 423–429.
  • De Rooij, J.; Bos, J.L. Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 1997, 14, 623–625.
  • Quackenbush, J. Microarray data normalization and transformation. Nat Genetics 2002, 32, 496–501.
  • Ullmannova, V.; Stockbauer, P.; Hradcova, M.; Soucek, J.; Haskovec, C. Relationship between cyclin D1 and p21 (Waf1/Cip1) during differentiation of human myeloid leukemia cell lines. Leuk Res 2003, 27, 1115–1123.
  • Donald, S.P.; Sun, X.-Y.; Hu, C.-A.A.; Yu, J.; Mei, J.M.; Valle, D.; Phang, J.M. Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res 2001, 61, 1810–1815.
  • Paz, K.; Socci, N.D.; van Nimwegen, E.; Viale, A.; Darnell, J.E. Transformation fingerprint: induced STAT3-C, v-Src and Ha-Ras cause small initial changes but similar established profiles in mRNA. Oncogene 2004, 23, 8455–8463.
  • Kashiwada, M.; Shyirakata, Y.; Inoue, Y.I.; Nakano, H.; Okazaki, K.; Okumura, K.; Yamamoto, T.; Nagaoka, H.; Takemori, T. TRAF-6 stimulates ERK activity in CD40 signaling along a Ras-independent pathway. J Exp Med 1998, 187, 237–244.
  • Plows, D.; Briassouli, P.; Owen, C.; Zoumpourlis, V.; Garrett, M.D.; Pintzas, A. Ecdysone-inducible expression of oncogenic Ha-Ras in NIH 3T3 cells leads to transient nuclear localization of activated extracellular signal-regulated kinase regulated by mitogen-activated protein kinase phosphatase-1. Biochem J 2002, 362, 305–315.
  • Treisman, R. Ternary complex factors: growth factor regulated transcriptional activators. Curr Opin Genet Dev 1994, 4, 96–101.
  • Terasawa, K.; Okazaki, K.; Nishida, E. Regulation of c-fos and Fra-1 by the MEK5-ERK5 pathway. Genes Cells 2003, 8, 263–273.
  • English, J.M.; Pearson, G.; Hockenberry, T.; Shivakumar, L.; White, M.A. Contribution of the ERK5/MEK5 pathway to Ras/Raf signaling and growth control. J Biol Chem 1999, 274, 31588–31592.
  • Sebastian, T.; Malik, R.; Thomas, S.; Sage, J.; Johnson, P.F. C/EBPbeta cooperates with RB:E2F to implement Ras(V12)-induced cellular senescence. EMBO J 2005, 24, 3301–3312.
  • Sandhu, C.; Donovan, J.; Bhattacharya, N.; Stampfer, M.; Worland, P.; Slingerland, J. Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells. Oncogene 2000, 19, 5314–5323.
  • Shan, B.; Farmer, A.A.; Lee, W.H. The molecular basis of E2F-1/DP-1-induced S-phase entry and apoptosis. Cell Growth Differ 1996, 7, 689–697.
  • Zhao, G.F.; Seng, J.J.; Zhang, H.; She, M.P. Effects of oxidized low-density lipoprotein on the growth of human artery smooth muscle cells. Chin Med J 2005, 118, 1973–1978.
  • Verna, L.; Ganda, C.; Stemerman, M.B. In vivo low-density lipoprotein induces intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 correlated with activator protein-1 expression. Arterioscler Thromb Vasc Biol 2006, 26, 1344–1349.
  • Olson, M.F.; Paterson, H.F.; Marshall, C.J. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 1998, 394, 295–299.
  • Mirza, A.M.; Gysin, S.; Malek, N.; Nakayama, K.; Roberts, J.M.; McMahon, M. Cooperative regulation of the cell division cycle by the protein kinases RAF and AKT. Mol Cell Biol 2004, 24, 10868–10881.
  • Zhu, J.; Woods, D.; McMahon, M.; Bishop, J.M. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 1998, 12, 2997–3007.
  • Downward, J. Ras signaling and apoptosis. Curr Opin Genet Develop 1998, 8, 49–54.
  • Vasseur, S.; Malicet, C.; Calvo, E.L.; Labrie, C.; Berthezene, P.; Dagorn, J.C.; Iovanna, J.L. Gene expression profiling of tumors derived from rasV12/E1A-transformed mouse embryonic fibroblasts to identify genes required for tumor development. Mol Cancer 2003, 2, 1–19.
  • Liou, J.S.; Chen, C.Y.; Chen, J.S.; Faller, D.V. Oncogenic Ras mediates apoptosis in response to protein kinase C inhibition through the generation of reactive oxygen species. J Biol Chem 2000, 275, 39001–39011.
  • Benhar, M.; Dalyot, I.; Engelberg, D.; Levitzki, A. Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol 2001, 21, 6913–6926.
  • Campbell, H.D.; Webb, G.C.; Young, I.G. A human homologue of the Drosophila melanogaster sluggish-A (proline oxidase) gene maps to 22q11.2, and is a candidate gene for type-I hyperprolinaemia. Hum Genet 1997, 101, 69–74.
  • Pandhare, J.; Cooper, S.K.; Phang, J.M. Proline oxidase, a proapoptotic gene, is induced by troglitazone: evidence for both peroxisome proliferator-activated receptor gamma-dependent and -independent mechanisms. J Biol Chem 2006, 281, 2044–2052.
  • Lehmann, K.; Janda, E.; Pierreux, C.E.; Rytomaa, M.; Schulze, A.; McMahon, M.; Hill, C.S.; Downward, J. Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 2000, 14, 2610–2622.
  • Tanaka, Y.; Nakayamada, S.; Fujimoto, H.; Okada, Y.; Umehara, H.; Kataoka, T.; Minami, Y. H-Ras/mitogen-activated protein kinase pathway inhibits integrin-mediated adhesion and induces apoptosis in osteoblasts. J Biol Chem 2002, 277, 21446–24452.
  • Zhang, M.; Yang, J.; Li, F. Transcriptional and post-transcriptional controls of survivin in cancer cells: novel approaches for cancer treatment. J Exp Clin Cancer Res 2006, 25, 391–402.
  • Li, F.; Brattain, MG. Role of the survivin gene in pathophysiology. Am J Pathol 2006, 169, 1–11.
  • Roberts, M.L.; Drosopoulos, G.K.; Vasileiou, I.; Stricker, M.; Taoufik, E.; Maercker, C.; Guialis, A.; Alexis, M.N.; Pintzas, A. Microarray analysis of the differential transformation mediated by Kirsten and Harvey Ras oncogenes in a human colorectal adenocarcinoma cell line. Int J Cancer 2006, 118, 616–627.
  • Barros, J.C.; Marshall, C.J. Activation of either ERK1/2 or ERK5 MAP kinase pathways can lead to disruption of the actin cytoskeleton. J Cell Sci 2005, 118, 1663–1671.
  • Mehta, P.B.; Jenkins, B.L.; McCarthy, L.; Thilak, L.; Robson, C.N.; Neal, D.E.; Leung, H.Y. MEK5 overexpression is associated with metastatic prostate cancer, and stimulates proliferation, MMP-9 expression, and invasion. Oncogene 2003, 22, 1381–1389.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.