314
Views
13
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLECellular and Molecular Biology

Androgen Regulates ADAMTS15 Gene Expression in Prostate Cancer Cells

, , , &
Pages 698-710 | Published online: 30 Jun 2010

REFERENCES

  • Ferlay, J.; Autier, P.; Boniol, M.; Heanue, M.; Colombet, M.; Boyle, P. Estimates of the cancer incidence and mortality in Europe in 2006. O. Annncol 2007, 18(3), 581–592.
  • Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M.J. Cancer statistics. Cancer, C.A. J Clin 2009, 59(4), 225–249.
  • Aus, G.; Robinson, D.; Rosell, J.; Sandblom, G.; Varenhorst, E.; R. South-Eastegion C. Prostateancer Group. Survival in prostate carcinoma – outcomes from a prospective, population-based cohort of 8887 men with up to 15 years of follow-up: results from three countries in the population-based P. Nationalrostate R. Canceregistry of Sweden. Cancer 2005, 103(5), 943–951.
  • Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. R. Natev Cancer 2002, 2(3), 161–174.
  • Rocks, N.; Paulissen, G.; El Hour, M.; Quesada, F.; Crahay, C.; Gueders, M.; Foidart, J.M.; Noel, A.; Cataldo, D. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 2008, 90(2), 369–379.
  • Sandberg, A.A. Endocrine control and physiology of the prostate. Prostate 1980, 1, 169–184.
  • Steers, W.D. 5α-Reductase activity in the prostate. Urology 2001, 58(6 Suppl. 1), 17–24.
  • Zhu, Y.S.; Cai, L.Q.; You, X.; Cordero, J.J.; Huang, Y.; Imperato-McGinley, J. Androgen-induced prostate-specific antigen gene expression is mediated via dihydrotestosterone in LNCaP cells. J Androl 2003, 24(5), 681–687.
  • Huggins, C. Effect of orchiectomy and irradiation on cancer of the prostate. S. Annurg 1942, 115(6), 1192–1200.
  • de Jong, F.H.; Oishi, K.; Hayes, R.B.; Bogdanowicz, J.F.; Raatgever, J.W.; van der Maas, P.J.; Yoshida, O.; Schroeder, F.H. Peripheral hormone levels in controls and patients with prostatic cancer or benign prostatic hyperplasia: results from the Dutch-Japanese case-control study. R. Canceres 1991, 51(13), 3445–3450.
  • Anderson, J.; Abrahamsson, P.A.; Crawford, D.; Miller, K.; Tombal, B. Management of advanced prostate cancer: can we improve on androgen deprivation therapy? Int, B.J.U 2008, 101(12), 1497–1501.
  • Roche, P.J.; Hoare, S.A.; Parker, M.G. A consensus DNA-binding site for the androgen receptor. E. Molndocrinol 1992, 6(12), 2229–2235.
  • Monge, A.; Jagla, M.; Lapouge, G.; Sasorith, S.; Cruchant, M.; Wurtz, J.M.; Jacqmin, D.; Bergerat, J.P.; Céraline, J. Unfaithfulness and promiscuity of a mutant androgen receptor in a hormone-refractory prostate cancer. M. Cellol S. Lifeci 2006, 63(4), 487–497.
  • Rawlings, N.D.; Morton, F.R.; Kok, C.Y.; Kong, J.; Barrett, A.J. MEROPS: the peptidase database. A. Nucleiccids Res 2008, 36, D320–D325.
  • Nicholson, A.C.; Malik, S.B.; Logsdon, J.M.; Van Meir, E.; Functional, G. evolution of ADAMTS genes: evidence from analyses of phylogeny and gene organization. Evol, B.M.C Biol 2005, 5(1), 11–23.
  • Porter, S.; Clark, I.M.; Kevorkian, L.; Edwards, D.R.; Clark, I.M.; Kevorkian, L.; Edwards, D.R. A. D. A. M. TheTS metalloproteinases. J. Biochem 2005, 386(1), 15–27.
  • Shindo, T.; Kurihara, H.; Kuno, K.; Yokoyama, H.; Wada, T.; Kurihara, Y.; Imai, T.; Wang, Y.; Ogata, M.; Nishimatsu, H.; Moriyama, N.; Oh-hashi, Y.; Morita, H.; Ishikawa, T.; Nagai, R.; Yazaki, Y.; Matsushima, K. ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility and organ morphology and function. J I. Clinnvest 2000, 105(10), 1345–1352.
  • Russell, D.L.; Doyle, K.M.; Ochsner, S.A.; Sandy, J.D.; Richards, J.S. Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation. J C. Biolhem 2003, 278(43), 42330–42339.
  • Vázquez, F.; Hastings, G.; Ortega, M.-A.; Lane, T.F.; Oikemus, S.; Lombardo, M.; Iruela-Arispe, M.L. METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J C. Biolhem 1999, 274(33), 23349–23357.
  • Stanton, H.; Rogerson, F.M.; East, C.J.; Golub, S.B.; Lawlor, K.E.; Meeker, C.T.; Little, C.B.; Last, K.; Farmer, P.J.; Campbell, I.K.; Fourie, A.M.; Fosang, A.J. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 2005, 434(7033), 648–652.
  • Glasson, S.S.; Askew, R.; Sheppard, B.; Carito, B.; Blanchet, T.; Ma, H.-L.; Flannery, C.R.; Peluso, D.; Kankl, K.; Yang, Z.; Majumdar, M.K.; Morris, E.A. Deletion of active ADAMTS-5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 2005, 434(7033), 644–648.
  • Colige, A.; Vandenberghe, I.; Thiry, M.; Lambert, C.A.; van Beeumen, J.; Li, S.W.; Prockop, D.J.; Lapière, C.M.; Nusgens, B.V. Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J C. Biolhem 2002, 277(8), 5756–5766.
  • Fujikawa, K.; Suzuki, H.; McMullen, B.; Chung, D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 2001, 98(6), 1662–1666.
  • Cross, N.A.; Chandrasekharan, S.; Jokonya, N.; Fowles, A.; Hamdy, F.C.; Buttle, D.J.; Eaton, C.L. The expression and regulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, ADAMTS-9, and ADAMTS-15, and TIMP-3 by TGFβ1 in prostate cells: relevance to the accumulation of versican. Prostate 2005, 63(3),269–275.
  • Cal, S.; Obaya, A.J.; Llamazares, M.; Garabaya, C.; Quesada, V.; López-Otín, C. Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 2002, 283(1–2), 49–62.
  • Jones, G.C.; Riley, G.P. ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. R. Arthritises Ther 2005, 7(4), 160–169.
  • Liu, Y.J.; Xu, Y.; Yu, Q. A. D. A. M. Full-lengthTS-1 and the ADAMTS-1 fragments display pro- and antimetastatic activity, respectively. Oncogene 2006, 25(17), 2452–2467.
  • Porter, S.; Span, P.N.; Sweep, F.C.; Tjan-Heijnan, V.C.G.; Pennington, C.J.; Pedersen, T.X.; Johnsen, M.; Lund, L.R.; Rømer, J.; Edwards, D.R. ADAMTS8 and ADAMTS15 expression predicts survival in human breast carcinoma. J. Int Cancer 2006, 118(5), 1241–1247.
  • Pearson, O.H.; Manni, A.; Arafah, B.M. Antiestrogen treatment of breast cancer: an overview. R. Canceres 1982, 42(8 Suppl.), 3424S–3429S.
  • Horoszewicz, J.S.; Leong, S.S.; Kawinski, E. LNCaP model of human prostatic carcinoma. R. Canceres 1983, 43(4), 1809–1818.
  • Lin, M.F.; Meng, T.C.; Rao, P.S.; Chang, C.; Schonthal, A.H.; Lin, F.F. Expression of human prostatic acid phosphatase correlates with androgen-stimulated cell proliferation in prostate cancer cell lines. J C. Biolhem 1998, 273(10), 5939–5947.
  • Sherwood, E.R.; Van Dongen, J.L.; Wood, C.G.; Liao, S.; Kozlowski, J.M.; Lee, C. Epidermal growth factor receptor activation in androgen-independent but not androgen-stimulated growth of human prostatic carcinoma cells. J. Br Cancer 1998, 77(6), 855–861.
  • Radonić, A.; Thulke, S.; Mackay, I.M.; Landt, O.; Siegert, W.; Nitsche, A. Guideline to reference gene selection for quantitative real-time PCBiochem, R. R. Biophyses Commun 2004, 313(4), 856–862.
  • Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-D. Deltaelta C(T)) method. Methods 2001, 25(4), 402–408.
  • Thalmann, G.N.; Sikes, R.A.; Wu, T.T.; Degeorges, A.; Chang, S.M.; Ozen, M.; Pathak, S.; Chung, L.W. LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate 2000, 44(2), 91–103.
  • Birney, E.; Andrews, T.D.; Bevan, P.; Caccamo, M.; Chen, Y.; Clarke, L.; Coates, G.; Cuff, J.; Curwen, V.; Cutts, T.; Down, T.; Eyras, E.; Fernandez-Suarez, X.M.; Gane, P.; Gibbins, B.; Gilbert, J.; Hammond, M.; Hotz, H.R.; Iyer, V.; Jekosch, K.; Kahari, A.; Kasprzyk, A.; Keefe, D.; Keenan, S.; Lehvaslaiho, H.; McVicker, G.; Melsopp, C.; Meidl, P.; Mongin, E.; Pettett, R.; Potter, S.; Proctor, G.; Rae, M.; Searle, S.; Slater, G.; Smedley, D.; Smith, J.; Spooner, W.; Stabenau, A.; Stalker, J.; Storey, R.; Ureta-Vidal, A.; Woodwark, K.C.; Cameron, G.; Durbin, R.; Cox, A.; Hubbard, T.; Clamp, M. An overview of Ensembl. R. Genomees 2004, 14(5), 925–928.
  • Podvinec, M.; Kaufmann, M.; Handschin, C.; Meyer, U. NUBIScan, an in silico approach for prediction of nuclear receptor response elements. E. Molndocrinol 2002, 16(6), 1269–1279.
  • Riegman, P.H.; Vlietstra, R.J.; van der Korput, J.A.; Brinkmann, A.O.; Trapman, J. The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. E. Molndocrinol 1991, 5(12), 1921–1930.
  • Israeli, R.S.; Powell, C.T.; Corr, J.G.; Fair, W.R.; Heston, W.D. Expression of the prostate-specific membrane antigen. R. Canceres 1994, 54(7), 1807–1811.
  • Veldscholte, J.; Berrevoets, C.A.; Ris-Stalpers, C. The androgen receptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens. J B. Steroidiochem B. Moliol 1992, 41(3–8), 665–669.
  • Culig, Z.; Hobisch, A.; Cronauer, M.V.; Cato, A.C.; Hittmair, A.; Radmayr, C.; Eberle, J.; Bartsch, G.; Klocker, H. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. E. Molndocrinol 1993, 7(12), 1541–1550.
  • Zhao, X.Y.; Malloy, P.J.; Krishnan, A.V.; Swami, S.; Navone, N.M.; Peehl, D.M.; Feldman, D. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. M. Nated 2000, 6(6), 703–706.
  • Taplin, M.E.; Bubley, G.J.; Shuster, T.D.; Frantz, M.E.; Spooner, A.E.; Ogata, G.K.; Keer, H.N.; Balk, S.P. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N J. Engl Med 1995, 332(21), 1393–1388.
  • Sartor, A.O.; Tangen, C.M.; Hussain, M.H.; Eisenberger, M.A.; Parab, M.; Fontana, J.A.; Chapman, R.A.; Mills, G.M.; Raghavan, D.; Crawford, E.D.; O. Southwestncology Group. Antiandrogen withdrawal in castrate-refractory prostate cancer: a O. Southwestncology Group trial (SWOG 9426). Cancer 2008, 112(11), 2393–2400.
  • Scher, H.I.; Kelly, W.K. Flutamide withdrawal syndrome: its impact on clinical trials in hormone-refractory prostate cancer. J O. Clinncol 1993, 11(8), 1566–1572.
  • Herrada, J.; Dieringer, P.; Logothetis, C.J. Characterization of patients with androgen-independent prostatic carcinoma whose serum prostate specific antigen decreased following flutamide withdrawal. J Urol 1996, 155(2), 620–623.
  • Dupont, A.; Gomez, J.L.; Cusan, L.; Koutsilieris, M.; Labrie, F. Response to flutamide withdrawal in advanced prostate cancer in progression under combination therapy. J Urol 1993, 150(3), 908–913.
  • Heinlein, C.A.; Chang, C. Androgen receptor (AR) coregulators: an overview. R. Endocrev 2002, 23(2), 175–200.
  • Kleinjan, D.A.; van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. J. Am G. Humenet 2005, 76(1), 8–32.
  • Cleutjens, K.B.; van der Korput, H.A.; van Eekelen, C.C.; van Rooij, H.C.; Faber, P.W.; Trapman, J. An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. E. Molndocrinol 1997, 11(2), 148–161.
  • Horie-Inoue, K.; Bono, H.; Okazaki, Y.; Inoue, S. Identification and functional analysis of consensus androgen response elements in human prostate cancer cells. B. Biochemiophys C. Resommun 2004, 325(4), 1312–1317.
  • Tanaka, K.K.; Bryantsev, A.L.; Cripps, R.M. Myocyte enhancer factor 2 and chorion factor 2 collaborate in activation of the myogenic program in Drosophila. C. Molell Biol 2008, 28(5), 1616–1629.
  • Potthoff, M.J.; Olson, E.N. MEF2: a central regulator of diverse developmental programs. Development 2007, 134(23), 4131–4140.
  • Wasserman, W.W.; Sandelin, A. Applied bioinformatics for the identification of regulatory elements. R. Natev Genet 2004, 5(4), 276–287.
  • Gerhardt, S.; Hassall, G.; Hawtin, P.; McCall, E.; Flavell, L.; Minshull, C.; Hargreaves, D.; Ting, A.; Pauptit, R.A.; Parker, A.E.; Abbott, W.M. Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains. J B. Moliol 2007, 373(4), 891–902.
  • Kashiwagi, M.; Enghild, J.J.; Gendron, C.; Hughes, C.; Caterson, B.; Itoh, Y.; Nagase, H. Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing. J C. Biolhem2004, 279(11), 10109–10119.
  • Kuno, K.; Bannai, K.; Hakozaki, M.; Matsushima, K.; Hirose, K. The carboxyl-terminal half region of ADAMTS-1 suppresses both tumorigenicity and experimental tumor metastatic potential. B. Biochemiophys C. Resommun 2004, 319(4), 1327–1333.
  • Sjöblom, T.; Jones, S.; Wood, L.D.; Parsons, D.W.; Lin, J.; Barber, T.D.; Mandelker, D.; Leary, R.J.; Ptak, J.; Silliman, N.; Szabo, S.; Buckhaults, P.; Farrell, C.; Meeh, P.; Markowitz, S.D.; Willis, J.; Dawson, D.; Willson, J.K.; Gazdar, A.F.; Hartigan, J.; Wu, L.; Liu, C.; Parmigiani, G.; Park, B.H.; Bachman, K.E.; Papadopoulos, N.; Vogelstein, B.; Kinzler, K.W.; Velculescu, V.E. The consensus coding sequences of human breast and colorectal cancers. Science 2006, 314(5797), 268–274.
  • Wood, L.D.; Parsons, D.W.; Jones, S.; Lin, J.; Sjöblom, T.; Leary, R.J.; Shen, D.; Boca, S.M.; Barber, T.; Ptak, J.; Silliman, N.; Szabo, S.; Dezso, Z.; Ustyanksky, V.; Nikolskaya, T.; Nikolsky, Y.; Karchin, R.; Wilson, P.A.; Kaminker, J.S.; Zhang, Z.; Croshaw, R.; Willis, J.; Dawson, D.; Shipitsin, M.; Willson, J.K.; Sukumar, S.; Polyak, K.; Park, B.H.; Pethiyagoda, C.L.; Pant, P.V.; Ballinger, D.G.; Sparks, A.B.; Hartigan, J.; Smith, D.R.; Suh, E.; Papadopoulos, N.; Buckhaults, P.; Markowitz, S.D.; Parmigiani, G.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B. The genomic landscapes of human breast and colorectal cancers. Science 2007, 318(5853), 1108–1113.
  • Viloria, C.G.; Obaya, A.J.; Moncada-Pazos, A.; Llamazares, M.; Astudillo, A.; Capellá, G.; Cal, S.; López-Otín, C. Genetic inactivation of ADAMTS15 metalloprotease in human colorectal cancer. R. Canceres 2009, 69(11), 4926–4934.
  • Weidner, N.; Carroll, P.R.; Flax, J.; Blumenfeld, W.; Folkman, J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. J. Am Pathol 1993, 143(2), 401–409.
  • Revelos, K.; Petraki, C.; Scorilas, A.; Stefanakis, S.; Malovrouvas, D.; Alevizopoulos, N.; Kanellis, G.; Halapas, A.; Koutsilieris, M. Correlation of androgen receptor status, neuroendocrine differentiation and angiogenesis with time-to-biochemical failure after radical prostatectomy in clinically localized prostate cancer. R. Anticanceres 2007, 27(5B), 3651–3660.
  • van ‘t Veer, L.J.; Dai, H.; van de Vijver, M.J.; He, Y.D.; Hart, A.A.M.; Mao, M.; Peterse, H.L.; van der Kooy, K.; Marton, M.J.; Witteveen, A.T.; Schrelber, G.J.; Kerkhoven, R.M.; Roberts, C.; Linsley, P.S.; Bernards, R.; Friend, S.H. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415(6871),530–536.
  • Yuan, X.; Balk, S.P. Mechanisms mediating androgen receptor reactivation after castration. O. Urolncol 2009, 27(1),36–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.